首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   8篇
  国内免费   7篇
林业   17篇
农学   34篇
基础科学   2篇
  62篇
综合类   46篇
农作物   49篇
水产渔业   1篇
畜牧兽医   11篇
园艺   24篇
植物保护   10篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   13篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   24篇
  2012年   13篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1979年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
1.
2.
3.
Whole birch stems were cut off in order to determine how coppicing affects root and stump starch, glucose, fructose and sucrose concentrations and their correlation with shoot regeneration capacity. The Betula pubescens Ehrh. and B. pendula Roth studied included intact trees, trees that had been coppiced 8 years earlier, trees coppiced at the beginning of the experimental season, and birches that had been coppiced twice, 8 years earlier and at the beginning of the experimental season. Carbohydrate accumulation differed between 8 years earlier coppiced and intact trees. Recent coppicing clearly decreased the starch and sugar concentrations of the roots, which were often highest in the thin roots. The concentrations of these compounds in the stumps were always low, although the carbohydrate concentrations of stumps, in particular, correlated with shoot regeneration capacity. Starch was the most labile of the carbohydrates measured and most clearly reacted to coppicing. Differences in starch- and sugar-reserve dynamics indicate a difference between these birch species in the use and replenishing of root and stump reserves. This information may also be of help when the effects of other stresses, for example, severe animal damage or burning, on the regrowth of young birch stands are estimated.  相似文献   
4.
Rooftop gardening or green roof establishment, one of the methods of afforestation for urban greening, has many benefits for the environment, the economy and urban landscapes. Various environmental stresses including heat, strong wind, sunshine and cold prevent most plants from growing well in extensive green roof systems. For the establishment of urban rooftop gardening in Beijing, we evaluated 13 ornamental plant species [Berberis thunbergii ‘Atropurea Nana’, Euonymus fortune (Turcz.) Hand., Viburnum dilatatum Thunb., Cotinus coggygria Scop., Swida alba Opiz., Weigela florida (Bunge.) A. DC., Jasminum nudiflorum Lindl., Euonymus japonicus Thunb., Euonymus japonicus ‘Cuzhi’, Buddleja davidii Franch., Pyracantha fortuneana (Maxim.) Li., Ligustrum lucidum Ait. and Spiraea salicifolia L.] for greening of flat rooftops. We obtained three indices concerning cold resistance, i.e., electrical conductivity of leaves, amounts of soluble sugars and amounts of free proline, providing a theoretical basis for selection of plants fit for roof and balcony greening. The results show that the six species P. fortuneana (Maxim.) Li., B. thunbergii ‘Atropurea Nana’, J. nudiflorum Lindl., E. fortune (Turcz.) Hand., E. japonicus Thunb. and E. japonicus ‘Cuzhi’ are excellent plants for rooftop gardening, judging from their strong ability in cold resistance. Plants such as L. lucidum Ait., C. coggygria Scop. and W. florida (Bunge) A. DC. showed a medium ability in cold resistance. However, these species can be used in roof and balcony greening after intensive management or acclimatization of variety. The ability to resist cold of plants such as W. florida (Bunge) A. DC., S. salicifolia L., V. rhytidophyllum and S. alba Opiz. (Cornus alba L.) was found to be rather weak. Therefore, cold-proof measures are recommended when using these species.  相似文献   
5.
Like most plants, pea (Pisum sativum L.) becomes tolerant to frost if it is first exposed to low non-freezing temperatures, a process known as cold acclimation. Cold acclimation is a complex process involving many physiological and metabolic changes. Two spring dry peas, two winter dry peas and one winter forage line were exposed to cold temperature in a controlled environment in two experiments, one using low light intensity and the other regular light intensity. Plants were harvested throughout the experiment and dry matter accumulation, water content, soluble and insoluble sugar concentrations were determined from shoot and root samples. Cold acclimation did not occur when temperatures were low if light intensity was low, even in winter peas. In contrast, with regular light intensity, the winter peas acquired more freezing tolerance than spring peas and a close relationship was found between the soluble sugar concentration of leaves just before the frost and the degree of freezing tolerance obtained by the different genotypes. Relationships between freezing tolerance and carbon partitioning between shoot and roots are discussed.  相似文献   
6.
Although the Advanced Backcross strategy has proven very useful for QTL detection in tomato, it has been used mainly in identifying QTL for agronomic traits such as yield, color, etc. Tomato flavor is an important quality characteristic, yet it has been difficult to assess flavor or traits that affect it. In this study the AB-QTL strategy was applied to four advanced backcross populations to identify QTL for biochemical properties that may contribute to the flavor of processed tomatoes, such as sugars and organic acids. A total of 222 QTL were identified for 15 traits, including flavor as assessed by a taste panel. Correlations of certain biochemicals with flavor and possible methods of assessing and improving flavor are discussed. In particular, QTL with very significant effects associated with the ratio of sugars/glutamic acid, a trait highly correlated with improved flavor, have been identified as good targets for future work in improving the flavor of tomatoes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
Potato (Solanum tuberosum L cv. Bintje) was exposed to ambient and elevated carbon dioxide (CO2), to ambient and elevated ozone (O3) and to elevated levels of both gases during two growing seasons, 1998 and 1999. Experiments in open-top chambers (OTC) were carried out in Finland, Sweden, Ireland, United Kingdom, Germany and Belgium and a FACE (Free Air Carbon dioxide Enrichment) experiment was carried out in Italy. In OTCs the plants were grown under ambient CO2 concentrations or with 550 and 680 μl l−1 CO2 alone or in combination with ambient or elevated O3 concentrations (target seasonal mean of 60 nl l−1 8 h per day). In the FACE systems the plants were exposed to ambient or 550 μl l−1 CO2. In the OTC experiments the reducing sugar content of potato tubers decreased significantly with increased concentration of O3. The starch content of potato tubers decreased, with negative impact on tuber quality, but the ascorbic acid concentration increased as a function of the AOT40 (The sum of the differences between hourly ozone concentration and 40 nl l−1 for each hour when the concentration exceeds 40 nl l−1 during a relevant growing season). However, simultaneous exposure to elevated CO2 counteracted the ozone effect. With increase in the CO2 exposure, glycoalkaloid and nitrate concentrations decreased yielding improved quality, while the citric acid concentration decreased causing a higher risk for discoloration after cooking. The amount of dry matter and starch increased significantly in the FACE experiment.  相似文献   
8.
Potato cultivars resistant to cold‐temperature sweetening are of major importance to the processing industry producing both chips (crisps) and French fries. When most modern potato cultivars are maintained in cold storage to retard sprouting, the tubers accumulate reducing sugars, and the products become an unacceptable brown colour when fried. Selection for better processing quality during the early generations of a breeding programme could be of considerable advantage. Using a portable ‘sugarmeter’, which requires only a drop of sap from the tuber on a test strip, many samples can be efficiently surveyed for low sugar as early as the F1 generation. Using seedlings of three test crosses, glucose and specific gravity of field‐grown tubers, minitubers from greenhouses and microtubers from in vitro culture were compared after cold treatment. Although the mean glucose levels of minitubers and microtubers were higher than field‐grown tubers, the correlation between the glucose contents of the three types of tubers was fairly high. A considerable genetic improvement was noted when progenies were grown as minitubers or microtubers, even though the response to selection for low glucose levels in minitubers and microtubers was lower than from direct selection from field‐grown tubers. The specific gravity of field‐grown tubers showed a significant association with freshly harvested minitubers and microtubers. Selection for low glucose content in minitubers can therefore save considerable resources in a breeding programme.  相似文献   
9.
In this study, long-term effects of salinity and high boron (B) on subcellular distribution of sugars in wheat leaves were investigated. Four treatments with three replications of each; control, high B, sodium chloride (NaCl) and NaCl + high B, respectively were established according to completely randomized design. Plants were grown hydroponically and harvested after 6 weeks onset of experiment. NaCl treatment markedly decreased the shoot fresh and dry weight compared to high B or NaCl + high Boron. It increased the sugar concentrations in subcellular compartments, whereas decreased in NaCl + high B. Contrary, NaCl either alone or in combination with high B decreased the sugar contents in whole leaf compared to control or high B. Overall, higher concentrations of sugars were observed in symplast compared to apoplast indicating the symplast as major compartment for sugar transport. Furthermore, wheat plants accumulate sugars in subcellular compartments to maintain their growth under stress conditions.  相似文献   
10.
Glucose is widely used to study the dynamics of easily available organics in soil. Pure culture studies have revealed that many microorganisms can sense and respond to glucose through chemosensory mechanisms that are not directly reliant on energy catabolism. However, the rapid mineralization of glucose by microorganisms makes it difficult to disentangle its energy effects from such non‐catabolic interactions. “Non‐metabolizable” glucose analogues have proven useful in mechanistic studies of glucose in pure culture, but have never been applied to complex microbial communities in soil. We sought to determine how their mineralization in soil differs from that of glucose, and whether they have potential as a new approach for investigating chemosensory mechanisms in soil microbiology. We incubated soil from an agricultural Haplic Luvisol under controlled conditions for 24 d and monitored CO2 efflux after addition of (1) glucose, and three “non‐metabolizable” glucose analogues: (2) 2‐deoxyglucose (DG), (3) α‐methylglucoside (αMG), and (4) 3‐O‐methyl‐glucose (OMG), at three concentration levels, along with a control. All three analogues did in fact produce a large increase in soil CO2 efflux, but the dynamics of their mineralization differed from the rapid degradation seen for glucose. At medium and high concentrations, CO2 efflux peaked between 2.5 and 4 d after amendment with DG and αMG, and was delayed by about one week for OMG. The markedly different patterns of mineralization between glucose and OMG offer a new tool for investigating the behavior of glucose in soil. By using OMG as a glucose model, chemosensory mechanisms could be studied with limited interference from energy catabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号