首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
植物保护   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
Late blight, caused by the oomycete Phytophthora infestans, is considered the most important and destructive disease of potato in Turkey. In this study, characterization of 367 isolates of P. infestans obtained from the potato-growing areas of the country was carried out to evaluate the pathogen population structure over the 2017–2019 production seasons. The isolates were characterized by numerous features including mating type, in vitro mefenoxam sensitivity, simple-sequence repeat (SSR) markers, and virulence against a set of potato differential lines. Most isolates were A2 mating type (353 isolates). Also, 68% of isolates were resistant to mefenoxam; the remainder were intermediate in their sensitivity and there were no sensitive isolates. SSR-based genotypic analysis of P. infestans populations showed a low genetic diversity. The 13_A2 clonal lineage predominated with a frequency of 92.1%, followed by 34_A1 (3.3%) and 37_A2 (2.7%). Genotypes 34_A1 and 37_A2 were detected only in 2019. This is the first report of 34_A1 and 37_A2 clonal lineages causing late blight disease of potato in Turkey. The most abundant virulence type was one overcoming resistance genes R1, R2, R3, R4, R6, R7, R10, and R11. These results emphasized that the migration of individuals and the asexual generation of subclonal differences were the main factors driving the population structure of P. infestans in Turkey.  相似文献   
2.
Pythium and Phytopythium spp. cause seed decay, damping off, and root rot in soybean, wheat, and many other crops. However, their diversity and importance as pathogens, particularly in different crop rotation systems, are largely unknown. A survey was conducted in the Huang-Huai region, one of the main areas of soybean–wheat rotation farming in China. In 2016–2018, we collected 300 soybean seedlings and 150 field soil samples from several representative locations, and identified 26 Pythium and 6 Phytopythium spp. from 212 isolates, based on internal transcribed spacer 2 (ITS2) and cytochrome oxidase subunit 1 sequences. The pathogenicity of these isolates was evaluated by growing soybean and wheat seeds in dishes and pots containing oomycete cultures. We found that 12 Pythium spp. (but no Phytopythium spp.) showed high pathogenicity on soybean and/or wheat, and nine of them (75%) were highly pathogenic on both crops. Among the nine species, Pythium spinosumPythium ultimum, Pythium species 1 (tentatively designated as ‘Candidatus Pythium huanghuaiense’), Pythium aphanidermatum, and Pythium myriotylum were highly abundant among all isolates (15%, 10%, 9%, 8%, and 5%, respectively). Nine species were selected for testing of sensitivity to the fungicides metalaxyl and mefenoxam. The EC50 values were all less than 10 μg/ml, indicating little resistance. Minimum inhibitory concentration values indicated isolates were about twice as sensitive to mefenoxam as to metalaxyl. These results provide a systematic understanding of Pythium and Phytopythium species associated with soybean in the Huang-Huai region, which is important for disease management and breeding programmes.  相似文献   
3.
4.
Phytophthora ramorum has been detected in official plant health surveys on Rhododendron, Viburnum and Camellia in ornamental nurseries in northern Spain since 2003. A collection of 94 isolates of P. ramorum was obtained from 2003 to 2008 from plants with symptoms at different geographical locations. Isolates were identified based on morphology and sequence of the rDNA ITS region. Mating type, genetic variation, sensitivity to phenylamide fungicides and aggressiveness of these isolates were determined. All isolates belonged to the A1 mating type, ruling out the possibility of genetic recombination. Seven microsatellite markers were used to study genetic diversity; three out of the seven microsatellite markers were polymorphic within the Spanish population of P. ramorum. This study confirms that all Spanish isolates of P. ramorum belonged to the EU1 lineage. Twelve intralineage genotypes were detected, five that are unique to Spain (EU1MG38, EU1MG41, EU1MG37, EU1MG39 and EU1MG40) and seven that are also present in at least one other European country (EU1MG1, EU1MG29, EU1MG22, EU1MG13, EU1MG2, EU1MG18 and EU1MG26). Genotypes EU1MG37, EU1MG39 and EU1MG40 were isolated from Rhododendron from one region; EU1MG38 and EU1MG41 were isolated from Camellia from two different regions. Isolates of genotype EU1MG38 were resistant to metalaxyl and mefenoxam. The level of genetic diversity within the Spanish population of P. ramorum is limited and indicates a relatively recent clonal expansion.  相似文献   
5.
The relative importance of primary and secondary infections (auto- and alloinfections) in the development of a carrot cavity spot (CCS) epidemic caused by Pythium spp. were investigated. Three cropping factors: fungicide application, soil moisture and planting density, were selected as the key variables affecting the disease tetrahedron. Their effects on: (i) disease measurements at a specific time, (ii) the areas under the disease progress curves (AUDPCs) and (iii) a time-dependent parameter in a pathometric incidence-severity relationship, were studied. Mefenoxam applications 5 and 9 weeks after sowing reduced the intensity of a field CCS epidemic that involved both primary and secondary infections. In microcosm experiments, mefenoxam reduced secondary infections by Pythium violae obtained by transplanting infected carrot roots and slowed disease progress (1·6 lesions per root in treated versus 5·8 lesions in non-treated microcosms). A deficit of soil moisture limited the movement of Pythium propagules to host tissue, and thus reduced primary infections in the field; it also promoted the healing of lesions, limiting lesion expansion and the potential for alloinfections (6·8–7·5 lesions per root in irrigated plots compared with 2·4 lesions in non-irrigated plots). A negative relationship between the mean root-to-root distance and the rate of alloinfections was established in microcosms; a reduction in mean planting density was also effective in limiting CCS development (0·5, 1·6 and 2·0 lesions per root in microcosms containing 8, 16 and 31 roots, respectively). An integrated disease management system based on a combination of cultural methods, such as optimized fungicide application, date of harvest versus soil moisture content, and host density versus planting pattern, may make a useful contribute to the control of CCS.  相似文献   
6.
Pink rot of potato, most commonly caused by Phytophthora erythroseptica , is a major field and post-harvest problem in southern Idaho, USA, particularly since 1998 when isolates resistant to the phenylamide fungicide metalaxyl-M (mefenoxam) were detected. Isolates of P. erythroseptica were collected from infected tubers in 2001 and 2002 from six Idaho counties and tested for resistance to metalaxyl-M on amended agar. Metalaxyl-M resistant (MR) and metalaxyl-M-sensitive (MS) isolates were identified in six counties; 160 isolates were highly resistant, seven moderately resistant and 57 sensitive to metalaxyl-M with mean EC50 values of 182, 23 and 0·5 mg L−1 ai metalaxyl-M, respectively. Mycelial growth rates and oospore production in agar were assessed for 20 MS and 20 MR isolates at 10, 15, 20, 25 and 30°C. Growth rates of MR isolates were between 2·5 and 3·1 times greater ( P  < 0·05) than those of MS isolates at 10, 15, 20 and 25°C, and oospore production was between 6·8 and 20·5 times greater ( P  < 0·0001) for MR than for MS isolates at the same temperatures. Colony growth in V8 broth at 18°C was greater for MR than MS isolates ( P  < 0·0032). However, zoospore production at 18°C was greater for MS than for MR isolates ( P  < 0·0109), and zoospore production m m −1 of colony circumference was also greater for MS than for MR isolates, 14 191 and 9959, respectively ( P  = 0·0109). Sexual reproduction of MR isolates in nature may be greater than MS isolates, but MS isolates may be more asexually fit based on the fitness parameters studied.  相似文献   
7.
Mandipropamid is a new mandelic acid amide fungicide expressing high activity against foliar infecting oomycetes, including the grapevine downy mildew, Plasmopara viticola . Because cross-resistance with the valinamide fungicides iprovalicarb and benthiavalicarb and the cinnamic acid amide fungicides dimethomorph and flumorph was postulated, all five compounds are classified as carboxylic acid amide (CAA) fungicides. To support this classification, cross-resistance among these compounds with field isolates and the segregation of resistance in F1 and F2 progeny of P. viticola were evaluated. A bimodal distribution of sensitivity in field isolates and cross-resistance among all CAAs for the vast majority of isolates were detected. Crosses between sensitive (s) and CAA-resistant (r) isolates of opposite mating types, P1 and P2, yielded abundant oospores. All F1-progeny isolates were sensitive to CAAs (s:r segregation 1:0), whereas in F2 progeny segregation of about 9:1 (s:r) was observed suggesting that resistance to CAA fungicides is controlled by two recessive nuclear genes. Mating type segregated in a ratio P1:P2 of c . 2:1 in F1 and 1:1 in F2 progeny. In the same crosses, resistance to the phenylamide fungicide mefenoxam segregated in a ratio of c . 1:3:2 (sensitive:intermediate:resistant), reflecting the monogenic, semidominant nature of resistance. The risk of resistance in P. viticola was classified as high for phenylamide and moderate for CAA fungicides. This is the first report on the inheritance of phenotypic traits in P. viticola .  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号