首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
农学   1篇
  1篇
综合类   7篇
农作物   1篇
园艺   4篇
植物保护   12篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
β- 氨基丁酸诱导甜( 辣) 椒抗疫病作用的研究   总被引:12,自引:2,他引:12  
 报道了用β- 氨基丁酸( DL-β-aminon-butyric acid, BABA) 喷雾处理辣椒叶片和茎后的诱导抗疫病作用。研究证明: 高浓度BABA ( 1 000 g/mL) 对离体辣椒疫霉病菌无抗菌活性, 用其喷雾处理辣椒的茎叶所诱导的抗疫病作用可完全控制其危害; 用BABA 诱导处理后3 d 接种辣椒疫霉病菌, 辣椒植株开始表达出较高的诱导抗性, 这种抗病作用可持续20 d 以上, 并表现出与数量抗病性相似的特性。  相似文献   
2.
β-氨基丁酸、茉莉酸及其甲酯诱导辣椒抗TMV作用的研究   总被引:5,自引:2,他引:5  
β -氨基丁酸 (BABA)、茉莉酸 (JA)及其甲酯 (MeJA)喷雾处理辣椒叶片和茎秆后可诱导辣椒获得对TMV的抗性。研究结果表明 :3种诱抗剂对不同辣椒品种所表现的诱抗效果没有显著差异 ;诱抗效果受诱抗剂的使用浓度、作物的生育期和TMV的接种浓度所影响 ;最高的诱抗效果可达到 5 0 %以上 ;BABA处理后 5~ 6d ,JA与MeJA处理后 6~ 10d接种TMV ,辣椒植株开始表达出较高的诱导抗性 ,这种抗性可持续 15d以上 ,并表现出与数量抗病性相似的特性。  相似文献   
3.
Induced Disease Resistance in Plants by Chemicals   总被引:23,自引:0,他引:23  
Plants can be induced locally and systemically to become more resistant to diseases through various biotic or abiotic stresses. The biological inducers include necrotizing pathogens, non- pathogens or root colonizing bacteria. Through at network of signal pathways they induce resistance spectra and marker proteins that are characteristic for the different plant species and activation systems. The best characterized signal pathway for systemically induced resistance is SAR (systemic acquired resistance) that is activated by localized infections with necrotizing pathogens. It is characterized by protection against a broad range of pathogens, by a set of induced proteins and by its dependence on salicylic acid (SA) Various chemicals have been discovered that seem to act at various points in these defense activating networks and mimic all or parts of the biological activation of resistance. Of these, only few have reached commercialization. The best- studied resistance activator is acibenzolar-5-methyl (BION). At low rates it activates resistance in many crops against a broad spectrum of diseases, including fungi, bacteria and viruses. In monocots, activated resistance by BION typically is very long lasting, while the lasting effect is less pronounced in dicots. BION is translocated systemically in plants and can take the place of SA in the natural SAR signal pathway, inducing the same spectrum of resistance and the same set of molecular markers. Probenazole (ORYZEMATE) is used mainly on rice against rice blast and bacterial leaf blight. Its mode of action is not well understood partly because biological systems of systemically induced resistance are not well defined in rice. Treated plants clearly respond faster and in a resistant manner to infections by the two pathogens. Other compounds like beta-aminobutyric acid as wdl as extracts from plants and microorganisms have also been described as resistance inducers. For most of these, neither the mode of action nor reliable pre-challenge markers are known and still other pathways for resistance activation are suspected. Resistance inducing chemicals that are able to induce broad disease resistance offer an additional option for the farmer to complement genetic disease resistance and the use of fungicides. If integrated properly in plant health management programs, they can prolong the useful life of both the resistance genes and the fungicides presently used.  相似文献   
4.
Spray mixtures consisting of the plant activator BABA (DL-3-aminobutyric acid) and the protectant fungicide mancozeb were significantly more effective than BABA or mancozeb alone in controlling late blight (Phytophthora infestans) in potato and tomato and downy mildew (Pseudoperonospora cubensis) in cucumber. A mixture composed of 5 parts BABA and 1 part mancozeb (w/w, a.i.) exhibited a higher synergy factor than the 1+1 or the 1+5 (BABA + mancozeb) mixtures. No synergistic interaction was detected between BABA plus mancozeb in controlling sporangial or cystospore germination, nor mycelial growth ofP. infestans in vitro. The results showed enhanced effect of mancozeb in BABA-induced plants, suggesting, therefore, that lower dosages of this fungicide may be sufficient to control late blight or downy mildew under field conditions. http://www.phytoparasitica.org posting July 15, 2003.  相似文献   
5.
6.
β-氨基丁酸诱导水稻穗瘟病抗性效果的比较试验   总被引:1,自引:1,他引:0  
本文就β-氨基丁酸等4种药剂对水稻穗瘟病进行了诱导抗性的研究,结果表明:BABA与春雷霉素混合施用可以诱导水稻对稻瘟病产生抗性,其防效和8%好米得的相当。  相似文献   
7.
The mechanism involved in systemic acquired resistance (SAR) can be non-specifically induced in susceptible plants. In response to pathogens, plants' natural defence mechanisms include the production of lignin and phytoalexins and the induction of plant enzymes. The aim of this research was to study the induction of SAR mediated by the chemical activator DL-3-aminobutyric acid (BABA) and the fungicide fosetyl-aluminium in potato cultivars with different levels of resistance against Phytophthora infestans (Mont) de Bary. To study the chemical induction of the resistance, the foliage of several potato cultivars was sprayed with BABA, fosetyl-aluminium or water (as a control treatment). After 3 days the foliage was inoculated with P. infestans. Seven days after inoculation, development of disease symptoms in the foliage was assessed. In postharvest tuber samples, evidence for enhancement of the defence response was evaluated by measuring the protein content of several hydrolytic enzymes as well as the phenol and phytoalexin content. The highest level of protection against late blight was observed when the chemicals were applied at early stages of crop development. An increase in resistance to late blight was also detected in tubers after harvest. There was also an increase in the protein level of beta-1,3-glucanase and aspartic protease as well as in the phenol and phytoalexin content of potato tuber discs obtained from postharvest tubers of treated plants. Thus the protective effect seemed to persist throughout the whole crop cycle. This treatment may offer the possibility of controlling both foliage and tuber blight and could have a major impact in reducing over-winter survival of P. infestans in tubers.  相似文献   
8.
Preventive and curative activities of postharvest treatments with selected chemical resistance inducers to control postharvest green (GM) and blue (BM) molds on oranges (cvs. ‘Valencia’ or ‘Lanelate’) artificially inoculated with Penicillium digitatum and Penicillium italicum, respectively, were evaluated. In vivo primary screenings to select the most effective chemicals and concentrations were performed with benzothiadiazole (BTH), β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA), sodium silicate (SSi), salicylic acid (SA), acetylsalicylic acid (ASA) and harpin. INA at 0.03 mM, SA at 0.25 mM, BABA at 0.3 mM and BTH at 0.9 mM were selected and tested afterwards as dips at 20 °C for 60 or 150 s with oranges artificially inoculated before or after the treatment and incubated for 7 d at 20 °C. Although it was an effective treatment, SSi at 1000 mM was discarded because of potential phytotoxicity to the fruit rind. Preventive or curative postharvest dips at room temperature had no effect or only reduced the development of GM and BM very slightly. Therefore, these treatments cannot be recommended for inclusion in postharvest decay management programs for citrus packinghouses.  相似文献   
9.
Bacterial canker is an economically important disease of tomato. Resistance induced by DL-β-Amino butyric acid against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis in tomato plants was investigated. Different doses of DL-β-Amino butyric acid (250–1000 μg ml−1 doses) were tested on 3-week old plants inoculated with a 108 CFU ml−1 bacterial suspension, and disease development was evaluated after inoculation and treatment. Although in vitro growth of the bacteria was not affected by DL-β-Amino butyric acid treatment, foliage sprays of 500 μg ml−1 DL-β-Amino butyric acid significantly suppressed disease development up to 54% by day 14 after inoculation at the four different doses tested. Bacterial populations were reduced by 84% in BABA-treated plants compared to water-treated plants by day 4 after inoculation. Inoculated BABA-treated plants showed significantly higher phenylalanine ammonia-lyase activity, peroxidase activity, and H2O2 concentration than inoculated water-treated plants during day 1 after treatment. These findings suggest that the DL-β-Amino butyric acid treatment resulted in an increase of these enzymes and in H2O2 concentration in planta, and was associated with induction of resistance to bacterial canker.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号