首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   58篇
  国内免费   18篇
林业   61篇
农学   74篇
基础科学   9篇
  195篇
综合类   55篇
农作物   51篇
水产渔业   94篇
畜牧兽医   63篇
园艺   15篇
植物保护   124篇
  2024年   1篇
  2023年   13篇
  2022年   14篇
  2021年   20篇
  2020年   31篇
  2019年   32篇
  2018年   25篇
  2017年   25篇
  2016年   26篇
  2015年   33篇
  2014年   20篇
  2013年   48篇
  2012年   31篇
  2011年   41篇
  2010年   31篇
  2009年   40篇
  2008年   24篇
  2007年   30篇
  2006年   32篇
  2005年   18篇
  2004年   32篇
  2003年   23篇
  2002年   20篇
  2001年   19篇
  2000年   11篇
  1999年   10篇
  1998年   13篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1956年   1篇
排序方式: 共有741条查询结果,搜索用时 46 毫秒
1.
2.
Although adult Rumex obtusifolius are problematic weeds, their seedlings are poor competitors against Lolium perenne, particularly in established swards. We investigated the possibility of using this weakness to augment control of R. obtusifolius seedlings with combinations of Gastrophysa viridula (Coleoptera: Chrysomelidae) and the rust fungus Uromyces rumicis. Rumex obtusifolius seedlings were grown in competition with L. perenne sown at different rates and times after R. obtusifolius: they competed successfully with L. perenne when sown 21 days before the grass. Sowing both species at the same time resulted in a dominant grass sward, with R. obtusifolius becoming dominant when sown 42 days prior to L. perenne. Grass sowing rate had no effect on R. obtusifolius growth or biomass. A second experiment investigated how competition from L. perenne sown 21 days after R. obtusifolius combined with damage from G. viridula and/or U. rumicis (applied at either the 3–4‐ or 10–13‐leaf stage, or at both stages) affected the growth and final biomass of R. obtusifolius. Beetle grazing at the latter leaf stage was the only treatment that reduced R. obtusifolius biomass, although rust infection at the earlier application led to an increase in shoot and root weight. The results are discussed in terms of the potential for use of these agents in the field.  相似文献   
3.
By burrowing galleries and producing casts, earthworms are constantly changing the structure and properties of the soils in which they are living. These changes modify the costs and benefits for earthworms to stay in the environment they modify. In this paper, we measured experimentally how dispersal behaviour of endogeic and anecic earthworms responds to the cumulative changes they made in soil characteristics. The influence of earthworm activities on dispersal was studied in standardised mesocosms by comparing the influence of soils modified or not modified by earthworm activities on earthworm dispersal rates.The cumulative use of the soil by the earthworms strongly modified soil physical properties. The height of the soil decreased over time and the amount of aggregates smaller than 2 mm decreased in contrast to aggregates larger than 5 mm that increased. We found that: (i) earthworm activities significantly modified soil physical properties (such as bulk density, soil strength and soil aggregation) and decreased significantly the dispersal rates of the endogeic species, whatever the species that modified the soil; (ii) the decreasing in the dispersal proportion of the endogeic species suggests that the cost of engineering activities may be higher than the one of dispersal; (iii) the dispersal of the anecic species appeared to be not influenced by its own activities (intra-specific influences) or by the activities of the endogeic species (inter-specific influences). Overall these results suggest that the endogeic species is involved in a process of niche construction, which evolved jointly with its dispersal strategy.  相似文献   
4.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   
5.
ABSTRACT

The global interest in growing perennial grain crops such as intermediate wheatgrass (Thinopyrum intermedium) (Kernza) for production of food and feed is increasing. Intercropping Kernza with legumes may be a sustainable way of supplying nitrogen to soil and associated intercrop. We determined the competitive interactions between intercropped Kernza (K) and alfalfa (Medicago sativa L.) (A) under three inorganic nitrogen (N) rates N0, N1, N2 (0, 200, 400 kg ha?1) and five species relative frequencies (SRF) (100%K:0%A, 75%K:25%A, 50%K:50%A, 25%K:75%A and 0% K:100%A) in mixed intercrops (MI) in a greenhouse pot experiment. After 11 weeks of growth. Kernza dry matter yield (DM) and N accumulated (NACC) were low, but alfalfa DM and NACC high at 0 kg N ha?1. 200 and 400 kg N ha?1 fertiliser application increased the competitive ability (CA) of Kernza and reduced the CA of alfalfa. SRF had large impacts on alfalfa DM, NACC and NFIX only at 0 kg N ha?1 fertiliser, and insignificant impacts on Kernza at all N fertiliser levels, indicating that adjustment of SRF may not be an effective way to modulate the interspecific competition of Kernza. Further research on the other factors that influence the interspecific competition are warranted.  相似文献   
6.
旨在研究马链球菌兽疫亚种(Streptococcus equi ssp.zooepidemicus,SEZ)烯醇化酶(enolase,Eno)对小鼠肺泡巨噬细胞(RAW264.7)吞噬能力的影响。通过构建原核表达质粒获得重组烯醇化酶(rEno),采用台盼蓝活细胞计数法,判定在不同处理浓度和时间下rEno蛋白对RAW264.7细胞的细胞毒性。将rEno蛋白与RAW264.7细胞共孵育后,用SEZ作用于细胞并检测细胞吞菌数量,判断RAW264.7细胞对SEZ的吞噬活性。进一步通过活细胞稳定同位素标记技术(SILAC)和蛋白质谱分析技术(LC-MS/MS),筛选到RAW264.7细胞中可能与SEZ Eno存在相互作用的候选蛋白。结果发现,10 μg·mL-1 rEno蛋白处理对RAW264.7细胞有明显的细胞毒性,且10 μg·mL-1 rEno蛋白处理RAW264.7细胞2和4 h可显著抑制其对SEZ的吞噬作用(P<0.01、P<0.05)。初步筛选到RAW264.7细胞中动力蛋白激活蛋白亚单位蛋白(dynactin subunit protein 2,Dctn)、整合素α-M蛋白(integrin alpha-M)等17种可能与Eno发生互作的蛋白。本研究获得了rEno重组表达蛋白,发现rEno可减少RAW264.7细胞对SEZ的吞噬,互作蛋白的初步筛选也为进一步揭示Eno在SEZ抗吞噬中的作用机制奠定了基础。  相似文献   
7.
Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs (Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs ($ ha?1 calculated as change in operating profit divided by unit change of the trait) for additional DM produced in different seasons of the year in four regions. The EV of early spring DM was consistently high across all regions, whereas EV for late spring DM was moderate to low. Genotype × environment analysis revealed significant reranking of DM yield among ryegrass cultivars across regions. Hence, separate performance values (PVs) were calculated for two mega‐environments and then combined with the corresponding season and region EV to calculate the overall EV for twenty‐three perennial ryegrass and fifteen short‐term ryegrass cultivars. The difference in operating profit between the highest ranked and lowest ranked perennial ryegrass cultivar ranged from $556 ha?1 to $863 ha?1 year?1 depending on region. For short‐term ryegrasses used for winter feed, the corresponding range was $394 to $478 ha?1 year?1. Using PV for DM yield, it was estimated that plant improvement in perennial ryegrass has added $12–$18 ha?1 year?1 (depending on region) operating profit on dairy farms since the mid‐1960s.  相似文献   
8.
Extreme drought events can directly decrease productivity in perennial grasslands. However, for rhizomatous perennial grasses it remains unknown how drought events influence the belowground bud bank which determines future productivity. Ninety‐day‐long drought events imposed on Leymus chinensis, a rhizomatous perennial grass, caused a 41% decrease in the aboveground biomass and a 28% decrease in belowground biomass. Aboveground biomass decreased due to decrease in both the parent and the daughter shoot biomass. The decreases in daughter shoot biomass were due to reductions in both the shoot number and each individual shoot weight. Most importantly, drought decreased the bud bank density by 56%. In addition, drought induced a bud allocation change that decreased by 41% the proportion of buds that developed into shoots and a 41% increase in the buds that developed into rhizomes. Above results were supported by our field experiment with watering treatments. Thus, a 90‐day‐long summer drought event decreases not only current productivity but also future productivity, because the drought reduces the absolute bud number. However, plasticity in plant development does partly compensate for this reduction in bud number by increasing bud development into rhizomes, which increases the relative allocation of buds into future shoots, at the cost of a decrease in current shoots.  相似文献   
9.
The effects of inoculation with two AM fungi (M1, Glomus caledonium; M2, Glomus spp. and Acaulospora spp.) and a fungivorous nematode Aphelenchoides sp. on growth and arsenic (As) uptake of Nicotiana tabacum L. were investigated in soils contaminated with a range of As. The reproduction of Aphelenchoides sp. was triggered by the co-inoculation of AM fungi regardless of AM fungal isolates and As levels. Stimulative effects of Aphelenchoides sp. on the development of mycorrhiza, slightly different between two AM fungi, were found particularly at the lowest As level. Irrespective of mycorrhizal inoculi, increasing soil As level decreased plant growth, but increased plant As uptake. Co-inoculation of AM fungi and Aphelenchoides sp. led plants to achieving further growth and greater As accumulation at the lowest As level. Results showed that the interactions between AM fungi and fungivorous nematodes were important in plant As tolerance and phytoextraction at low level As-polluted soil.  相似文献   
10.
The role of soil organisms as possible driver of flowering has never been investigated. We hypothesized that Collembola (microarthropods) will change plant allocation to reproductive modes by changing soil nutrient availability. Individual seedlings of Poa annua were planted in microcosms, in the presence or absence of Collembola. Collembola affected biotic (fungal biomass) and abiotic (NNO3, P2O5) soil properties and some morphological (number of leaves, root biomass) and chemical (C:N, K, Mg, N) traits of P. annua. As a result, flowering of P. annua was promoted by the presence of Collembola. This provides experimental evidence that soil microarthropods can affect the reproduction strategy and phenology of a plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号