首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
农学   1篇
  52篇
综合类   9篇
畜牧兽医   2篇
园艺   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   35篇
  2011年   1篇
  2009年   2篇
  2006年   3篇
  2004年   2篇
  2000年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有65条查询结果,搜索用时 359 毫秒
1.
With the electro–ultrafiltration (EUF) technique, the plant availability of several plant nutrients in soils can be characterized. The basic principle of EUF is that an electric field is induced using platinum electrodes. Ions in the soil suspension move either to the cathode or to the anode and are filtrated through ultra‐membrane filters. In the standard EUF procedure, two extractions steps are used: 30 min at 20°C and 5 min at 80°C. However, the determination of micronutrients and heavy metals with the standard EUF procedure is not possible, because the solubility of these elements in water is low and most of the watersoluble elements are precipitated when passing the platinum electrodes. The addition of DTPA, a well known complexing agent, during a third EUF fraction (5 min at 80°C) enables extraction of micronutrients and heavy metals. Highest concentrations in the 33 soils of the study were found for iron, followed by zinc, manganese, lead, copper, and nickel. Lower concentrations were obtained for cobalt, chromium, cadmium, and molybdenum. For two soils, the EUF/DTPA procedure was compared to CaCl2/DTPA and EDTA soil extraction methods, showing that higher or comparable amounts were found with CaCl2/DTPA and much higher amounts with the EDTA method. These results reveal that the EUF/DTPA technique in principle can be used for the determination of plant‐available micronutrients and heavy metals. However, in a next step the relationship between EUF/DTPA‐extractable elements and their availability for plants needs to be quantified.  相似文献   
2.
This study was carried out with the objective of evaluating the effect of citrate concentration on the extraction efficiency of some micronutrients from soil. Composite surface soil samples (0–20 cm) were collected from Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa and Humbo Districts) and Dire Dawa Administrative Council in purposive sampling. The treatments were arranged in completely randomized design (CRD) with three replications. A greenhouse pot experiment with soybean plant was conducted to determine the correlation between soil test methods and the selected micronutrients, such as iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) in the leaves of the plant. The results showed that, among the different citrate concentrations with strontium chloride (SrCl2) tested for the determination of available Fe, Mn and Zn, the highest correlation coefficients (r = 0.82, p < 0.05), (r = 0.96, p < 0.001) and (r = 0.98, p < 0.001) were found between the diethylenetriamine pentaacetic acid (DTPA) method and 0.02 M strontium chloride (SrCl2)-0.025 M citric acid extractant, respectively. Therefore, 0.02 M SrCl2-0.025 M citric acid extractant is considered to be the most effective for the determination of Fe, Mn and Zn in soils of the studied areas. Similarly, high correlation coefficients (r = 0.97, p < 0.001) were found between DTPA and 0.02 M SrCl2-0.05 M citric acid and (r = 0.88, p < 0.01) between DTPA and 0.02 M SrCl2-0.025 M citric acid extractants for the determination of available Cu from soils. Hence, the 0.02 M SrCl2-0.05 M citric acid extractant was shown to be the best for the determination of Cu in soils of the studied areas. However, considering the use of universal extractant, the 0.02 M SrCl2-0.025 M citric acid extractant could easily be adopted as a procedure for the determination of Fe, Cu, Mn and Zn for both agricultural and environmental purposes. The greenhouse experiment confirmed the result.  相似文献   
3.
Abstract

Hot water extraction (HW) is time‐consuming, highly variable, and losing popularity as the standard method for estimating plant‐available boron (B) in soil. Proposed alternatives are not widely used and guesstimation is replacing assessment at many soil test facilities. Mehlich 3 is increasingly promoted as a universal extractant, and diethylenetriaminepentaacetic acid (DTPA)–sorbitol and pressurized hot water (PHW) are effective and comparable to hot water extraction but also simpler and easier. Mehlich 3 B extraction has been compared mainly to hot water extraction. Because Mehlich 3 usage would be limited to neutral to acid soils, this study used a limed acid Darco loamy fine sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudult) from eastern Texas to which 10 rates of B were applied followed by either incubation without plants or planting to alfalfa in greenhouse pots. Mehlich 3 extraction of soils obtained from a long‐term experiment on Darco soil from which alfalfa yield response has already been related to hot water, DTPA–sorbitol, and PHW is reported. The purpose was to determine the efficiency of Mehlich 3 B extraction compared to hot water, PHW, and DTPA–sorbitol in these B‐fertilized soils. Mehlich 3–extractable B significantly correlated with the rate of B application to incubation, greenhouse, and field soils and with B concentration and total B uptake in alfalfa in a greenhouse experiment. However, yield responses to B application were not observed in the greenhouse study. In the field where B response to B application was observed, Mehlich 3–extractable B did not correlate with alfalfa yield, whereas hot water and pressurized hot water did. In considering Mehlich 3 for B extraction, be aware that some older inductively coupled plasma (ICP) models may have significant drift when B is measured in Mehlich 3 extractant. In the current study, this problem was overcome with a new model instrument. Although effective in estimating B levels imposed on soils by fertilizer application, Mehlich 3 could not predict yield and thus cannot currently be recommended as a “universal” extractant to include B.  相似文献   
4.
The primary factor that influences release of zinc (Zn) for plants is the rhizosphere. However, information about Zn-desorption characteristics in the rhizosphere is limited. A greenhouse experiment was performed to determine Zn-release characteristics in the bulk and the rhizosphere soils using a rhizobox. The kinetics of Zn release was determined by successive extraction with diethylenetriaminepentaacetic acid (DTPA)– triethanolamine (TEA) in a period of 1 to 504 h at 25 ± 1 °C in the bulk and the rhizosphere soils. Moreover, Zn extracted by using three extractants [DTPA-TEA, ammonium bicarbonate (AB)-DTPA, and Mehlich 3] in the bulk and the rhizosphere soils. The results showed that Zn extracted in the rhizosphere soils were significantly (P < 0.01) lower than the bulk soils. The mean of Zn release in the bulk and the rhizosphere soils were 5.31 and 4.91 mg kg?1, respectively. Release kinetics of Zn conformed fairly well to power function, first order, parabolic diffusion, and simplified Elovich equations. The results of kinetics study indicated that release-rate coefficients decreased in the rhizosphere soils compare to the bulk soils. The correlation studies showed that Zn release after 504 h was significantly correlated (P < 0.05) with Zn extracted by using DTPA-TEA, AB-DTPA, and Mehlich 3 in the bulk and the rhizosphere soils. The results of this research showed that Zn-release characteristics in the bean rhizosphere soils were different from the bulk soils.  相似文献   
5.
Adsorption and desorption reactions of zinc (Zn) in soils control its availability to plants. In the present investigation, time-dependent Zn release was evaluated using three organic acids [diethylenetriaminepentaacetic acid (DTPA), citric acid, and maleic acid] to depict the Zn fraction controlling Zn release rate from slightly calcareous to calcareous soils. Eight surface and two subsoil samples of selected soil series varied in their physicochemical properties, amount of Zn held in different chemical pools, and Zn-retention capacities (21–61%). Each soil was extracted for a total period of 24 h at 1:10 soil/extractant suspension ratio using 0.005 M DTPA. The time-dependent parabolic diffusion model best described the Zn release in six consecutive extractions. Soils differed in cumulative Zn extracted (1.09–3.81 mg kg?1 soil) and Zn release rate. Under similar conditions, three soils differing in Zn-retention capacities were also extracted with five different concentrations (0.01–0.0001 M) of citric and maleic acids. Although both maleic and citric acids released soil Zn at greater rates and in greater amounts than DTPA, maleic acid was more efficient. Soil Zn bound to amorphous iron (Fe) + manganese (Mn) oxides was the main Zn pool that controlled Zn release characteristics.  相似文献   
6.
Given the relationship between the contents of heavy metals extracted from contaminated soil samples and dilution of these samples in diethylenetriaminepentacetic acid (DTPA) solution, the goal of this work was to test three soil–extractant solution ratios, namely 1:5, 1:10, and 1:15. The extracted contents from each solution were compared to those extracted by bean plants (Phaseolus vulgaris) cultivated in a greenhouse in two different soils: dystrophic red latosol (RLd) and humic red-yellow latosol (RYLh). Contents of cadmium (Cd) and lead (Pb) were greater in RYLh (lower amount of clay) for all soil–extractant ratios; 1:5 and 1:10 ratios differed negligibly from the plant result for the Cd extraction, while for Pb, the 1:15 soil–extractant ratio was the one that better correlated with the extractive behavior of sensitive indicator plants.  相似文献   
7.
The Mehlich 3 method for the extraction of available micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), is more advantageous compared to the diethylene triamine pentaacetic acid (DTPA) method, because it can also be used for the extraction of macronutrients. The aim of this study was to compare the Mehlich 3 and DTPA methods for 172 soils in Greece having different levels of pH and calcium carbonate. Single and multiple regression analyses were employed to evaluate the relationship between Mehlich 3 and DTPA tests. Mehlich 3 results correlated well with DTPA-extractable Cu and Zn, but the correlation was poor for DTPA-extractable Mn. Also, a high correlation was found between Mehlich 3 and DTPA-extractable Fe for calcareous soils (R2 = 0.89), while a moderate relationship was found for noncalcareous soils (R2 = 0.65), which was improved to 0.78 when the pH was taken into account in multiple regression analysis.  相似文献   
8.
Abstract

Experiments were conducted to evaluate DTPA as an extractant of available soil Fe and to establish interpretive guides. A critical level of 6 ppm DTPA‐extractable soil Fe correctly predicted Fe deficiency of field grown plants at 11 of 13 locations. In a greenhouse experiment increased yields of sorghum from treatments that increased soil Fe availability were correctly predicted on 13 of 14 soils by a critical level of 5 ppm.  相似文献   
9.
Abstract

Problems are invariably encountered when attempts are made to explain the variability in Bray percent yields or plant response in terms of soil or plant iron (Fe). To resolve this inconsistency, the present investigation was initiated to identify a combination of soil extractable Fe, soil properties and form of plant Fe that may be used as a measure of Fe deficiency. The study involved 16 diverse soils, using upland rice (Oryza sativa L.) as the test crop and Fe‐EDDHA [ferric ethylenediamine di (o‐hydroxyl‐phenyl acetic acid)] as source of Fe. The results showed that Bray percent yields were neither related to DTPA (diethylenetriamine pentaacetic acid) or EDTA (ethylenediamine tetraacetic acid) extractable Fe nor with total plant Fe. Even the inclusion of pH, lime, organic carbon and clay data in the regression equations was of no value. However, Bray percent yields were significantly and positively (r = 0.57* ) associated with ferrous Fe (Fe2+) in 40‐day‐old rice plants. The explanation concerning variability in Bray percent yields obtained on diverse soils could be increased about one and half 2 times (R2= 0.59*) if the contribution of lime and soil pH was also incorporated in the stepwise regression analysis. The individual contribution to R of lime, pi respectively. Thus, it appears that Fe2+ concentration in plants (along with soil pH) may identify Fe deficiency. The critical limit to separate Fe deficient from green rice plants was set at 45 ug Fe2+/g in the leaves.  相似文献   
10.
利用O3-FACE平台研究近地面臭氧浓度升高(目标值比周围大气高50%)对2009—2010年间麦季各生育期不同深度(0~5cm,5~10cm和10~15cm)耕层土壤微量元素有效性和成熟期地上部分微量元素累积量的影响。结果表明,近地层大气O3浓度增加提高了麦季耕层(0~15cm)土壤中有效性Fe、Mn含量,降低了有效性Cu、Zn含量,对Zn的减幅达27.3%(P〈0.05);大气O3浓度升高对土壤5~10cm土层DTPA提取态Fe、Mn、Cu、Zn的影响最大;高O3浓度显著降低了5~10cm和10~15cm土壤DTPA-Zn含量(P〈0.05)。O3浓度升高降低了小麦成熟期生物量和微量元素累积量。对不同层次土壤有效态微量元素和成熟期微量元素累积量对O3浓度升高响应进行了分析,同时指出应从土壤性质和作物生长两个方面进一步研究全球大气环境变化对土壤有效态微量元素的影响机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号