首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2篇
  2014年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Hydrochars and biochars are products of the carbonization of biomass in different conversion processes. Both are considered suitable soil amendments, though they differ greatly in chemical and physical composition (e.g., aromaticity, inner surface area) due to the different production processes (pyrolysis, hydrothermal carbonization), thus affecting their degradability in soil. Depending on the type, char application may provide soil microorganisms with more (hydrochars) or less (biochars) accessible C sources, thus resulting in the incorporation of nitrogen (N) into microbial biomass. A soil‐incubation experiment was conducted for 8 weeks to determine the relationship between mineral‐N concentration in the soil solution and microbial‐biomass development as well as soil respiration. An arable topsoil was amended with two hydrochars from feedstocks with different total N contents. Biochars from the same feedstocks were used for comparison. Both char amendments significantly decreased mineral‐N concentration and promoted microbial biomass compared to the nonamended control, but the effects were much stronger for hydrochar. Hydrochar application increased soil respiration significantly during the first week of incubation, simultaneous with the strongest decrease in mineral‐N concentration in the soil and an increase in microbial biomass. The amount of N detected in the microbial biomass in the hydrochar treatments accounted for the mineral N “lost” from the soil during incubation. This shows that microbial immobilization is the main sink for decreasing mineral‐N concentrations after hydrochar application. However, this does not apply to biochar, since the amount of N recovered in microorganisms was much lower than the decrease in soil mineral‐N concentration. Our results demonstrate that while both chars are suitable soil amendments, their properties need to be considered to match the application purpose (C sequestration, organic fertilizer).  相似文献   
2.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号