首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   59篇
  国内免费   78篇
林业   11篇
农学   28篇
基础科学   19篇
  313篇
综合类   267篇
农作物   25篇
水产渔业   77篇
畜牧兽医   49篇
园艺   5篇
植物保护   21篇
  2024年   12篇
  2023年   20篇
  2022年   40篇
  2021年   34篇
  2020年   37篇
  2019年   32篇
  2018年   23篇
  2017年   39篇
  2016年   37篇
  2015年   44篇
  2014年   32篇
  2013年   40篇
  2012年   65篇
  2011年   50篇
  2010年   25篇
  2009年   38篇
  2008年   33篇
  2007年   33篇
  2006年   38篇
  2005年   23篇
  2004年   18篇
  2003年   8篇
  2002年   13篇
  2001年   8篇
  2000年   11篇
  1999年   16篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
排序方式: 共有815条查询结果,搜索用时 173 毫秒
1.
Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA- and AOB-supported nitrification determined both in soil-water slurries and in unsaturated whole soil at field moisture. Soils were collected from stands of red alder (Alnus rubra Bong.) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) at three sites (Cascade Head, the H.J. Andrews, and McDonald Forest) on acidic soils (pH 3.9–5.7) in Oregon, USA. The abundances of AOA and AOB were measured using quantitative PCR by targeting the amoA gene, which encodes subunit A of ammonia monooxygenase. Total and AOA-specific (octyne-resistant) nitrification activities in soil slurries were significantly higher at Cascade Head (the most acidic soils, pH < 5) than at either the H.J. Andrews or McDonald Forest, and greater in red alder compared with Douglas-fir soils. The fraction of octyne-resistant nitrification varied among sites (21–74%) and was highest at Cascade Head than at the other two locations. Net nitrification rates of whole soil without NH4+ amendment ranged from 0.4 to 3.3 mg N kg−1 soil d−1. Overall, net nitrification rates of whole soil were stimulated 2- to 8-fold by addition of 140 mg NH4+-N kg−1 soil; this was significant for red alder at Cascade Head and the H.J. Andrews. Red alder at Cascade Head was unique in that the majority of NH4+-stimulated nitrifying activity was octyne-resistant (73%). At all other sites, NH4+-stimulated nitrification was octyne-sensitive (68–90%). The octyne-sensitive activity—presumably AOB—was affected more by soil pH whereas the octyne-resistant (AOA) activity was more strongly related to N availability.  相似文献   
2.
Nitrification plays a central role in global nitrogen cycle, which is affected by biological interaction between soil microfauna and microorganisms. However, the complexity of soil biotic communities made it difficult to reveal organizational principles of the community and the interactions among species. Here, we used the network analysis to decipher the interactions between nematodes and ammonia oxidizers within aggregate fractions under 10-year manure application, and examine their associations with soil variables and potential nitrification activity (PNA). Three aggregate fractions included large macroaggregates (>2000 μm, LA), small macroaggregates (250–2000 μm, SA), and inter-aggregate soil and space (<250 μm, IA). Aggregate factions showed a remarkable effect on association networks of nematodes and ammonia oxidizers. The average connectivity (avgK) and the number of edges in overall networks increased with increasing aggregate sizes, while the average geodesic distance (GD) followed the opposite trend. The LA network could be viewed as a better organized or a better operational soil food web with more functional interrelated members than the SA and IA networks. The modules related to PNA were significantly correlated and clustered together as meta-modules in networks of aggregate fractions. The role-shifts prevailed among the network members such as significant module memberships (MMs) and generalist/specialist operational taxonomic units (OTUs). A half of shared nodes were further identified as shared MMs, dominated by ammonia-oxidizing bacteria (AOB) especially for Nitrosospira cluster 3a and 10. Soil pH could explain partly the shift of module hubs in different networks, while grazing by bacterivores might account for three exclusively connecters related to Nitrososphaera clusters 1.1. The strongly coupled modules correlated positively to pH and total carbon (TC), regardless of aggregate fractions. The network analysis approach provided new insights into potential importance of network interactions between nematodes and ammonia oxidizers in soil nitrogen cycling.  相似文献   
3.
The environmental impact of crop production is mainly related to fossil fuels consumption and to fertilisers application. Emissions arising from the spreading of organic and mineral fertilisers are important contributors for impact categories such as eutrophication and acidification. The choice of the fertilisers and of the spreading techniques as well as the crop residues management can deeply affect the environmental impact related to crop cultivation.In this study, seven scenarios describing fertilising schemes characterised by different organic and mineral fertilisers and by different mechanisation were compared. The aim is to evaluate, using the Life Cycle Assessment (LCA) method, how the environmental performances of grain maize production were affected by these different fertilisers schemes. The study was carried out considering a cradle to farm gate perspective and 1 t grain maize was selected as functional unit. Inventory data were collected on a farm located in Po Valley (Northern Italy) during year 2013 and were processed using the composite method recommended by the International Reference Life Cycle Data System (ILCD). The compared scenarios involved organic and mineral fertiliser distribution and were: pig slurry incorporation after >3 days after spreading (BS), fast pig slurry incorporation within 2 h from spreading (AS1), direct soil injection of pig slurry (AS2), pig slurry incorporation (after >3 days) with straw collection (AS3), digestate spreading instead of pig slurry (after >3 days) (AS4), only mineral fertilisers (i.e. urea and superphosphate) distribution (AS5) and only mineral fertilisers (i.e. calcium ammonium nitrate and superphosphate) distribution (AS6).The results were not univocal, since climate and soil conditions as well as physical and chemical fertiliser characteristics differently affected the environmental load, especially for particulate matter formation, terrestrial acidification and terrestrial eutrophication impact categories. AS1 and AS2 showed the most beneficial results for these impact categories (between ↙67% and ↙73% respect to worst scenario). AS6, on the opposite, showed the highest environmental impact for those impact categories mainly affected by energy and fossil fuel consumption (climate change, ozone depletion, human toxicity with carcinogenic effect, particulate matter, freshwater eutrophication, freshwater ecotoxicity and mineral, fossil and renewable resources depletion), categories on which AS3 and AS4 were the best solutions. AS3 was the most impacting for terrestrial acidification and eutrophicationA sensitivity analysis was carried out varying grain maize yield (mostly affected: marine eutrophication) and ammonia volatilisation losses due to organic fertilisers (mainly affected: terrestrial acidification and eutrophication).The achieved results can be useful for the development of ⬓spreading rules⬽ that drive the application of organic fertilisers in agricultural areas where there is an intense livestock activity.  相似文献   
4.
秸秆生物炭具有改善土壤生态环境、土壤蓄水保肥和减少温室气体排放等正效应,但其石灰效应会加大稻田氨挥发损失。为充分发挥生物炭吸铵特性,降低其石灰效应的不利影响,对不同热解温度(300、500、700℃)和酸化水平(pH值=5、7、9)稻草生物炭处理下的田面水NH_4~+-N浓度、氨挥发和水稻产量进行了研究。结果表明:偏酸性(pH值=5)、中性(p H值=7)生物炭处理在基肥期和分蘖肥期均能显著降低田面水NH_4~+-N峰值浓度(P0.05),降幅达16.90%~35.60%。全生育期稻田氨挥发损失占施氮量的15.14%~26.05%(2019年)、15.10%~19.00%(2020年)。稻田增施热解温度为700℃、酸化水平为5(p H值=5)的生物炭(C700P5)降氨效果最好,两年氨挥发分别显著降低22.93%、12.61%(P0.05)。高温热解配合偏酸性、中性生物炭(C700P5、C700P7)增产效果显著,增产率达9.92%~13.50%,结构方程模型表明,其增产原因是生物炭酸化处理降低了稻草生物炭的石灰效应,而热解温度调整提高了生物炭阳离子交换量(CationExchange Capacity,CEC),进而降低了田面水NH_4~+-N浓度和氨挥发损失,最终提高了水稻地上部氮素积累和水稻产量。研究可揭示不同热解温度和酸化水平制备的生物炭在稻田中的应用潜力,并为稻田合理施用生物炭和减少化肥施用量提供理论依据。  相似文献   
5.
综述了植物氨同化以及烟草中苯丙氨酸代谢、脯氨酸代谢、美拉德反应及其与烟叶风味和品质关系的研究进展,并分析了环境因素对烟草氨基酸代谢的影响,为深入研究氨基酸对烟叶品质和风味影响的机制奠定了基础。  相似文献   
6.
Digestates vary in composition and studies regarding their impact on C and N dynamics in soils are scarce. The objective was to analyse the C and N dynamics of digestates originating from various substrates applied to a sandy Cambisol and a silty Anthrosol. In three laboratory experiments (4–6 weeks), the effects of digestate properties, N rate and water content were tested. Averaged over both soils, 21% of the C supplied was emitted as CO2. Potential NH3 emissions during the first week ranged between 6% and 12% of NH4+ present in the digestates. The emission factors in the sandy Cambisol were on average 1.2 and 2 times higher for CO2 and potential NH3, respectively, compared to the silty Anthrosol. Similarly, net nitrogen mineralization in the sandy Cambisol was approximately twice the N mineralized in the silty Anthrosol. Net nitrification was not influenced by soil texture or different digestates, but increased with increasing application rates and had highest values at 75% of water holding capacity. Our results indicate that the type of substrate input for anaerobic digestion influences the properties of the digestate and therefore the dynamics of C and N. However, soil texture can affect these dynamics markedly.  相似文献   
7.
Soil pollution by elevated heavy metals exhibits adverse effects on soil microorganisms. Ammonia oxidizing bacteria and ammonia oxidizing archaea perform ammonia oxidative processes in acidic soils. However, influence of heavy metal stress on soil ammonia oxidizers distribution and diversity is inadequately addressed. This study investigated the responses of ammonia oxidizing bacteria and archaea to heavy metals, Cu and As during short-term laboratory experiment. Two different acidic alfisols named as Rayka and Hangzhou spiked with different concentrations of As, Cu and As + Cu were incubated for 10 weeks. Significant reduction in copy numbers of archaeal-16S rRNA, bacterial-16S rRNA and functional amoA genes was observed along elevated heavy metal concentrations. Ammonia oxidizing archaea was found to be more abundant than ammonia oxidizing bacteria in all the heavy metal treatments. The potential nitrification rate significantly decreased with increasing As and Cu concentrations in the two soils examined. Denaturing gradient gel electrophoresis analysis revealed no apparent community shift for ammonia oxidizing archaea even at higher concentrations of As and Cu. Phylogenetic analysis of archaeal amoA gene from 4 clone libraries indicated that all the archaeal amoA sequences were placed within 3 distinct clusters from soil and sediment group 1.1b of Thaumarchaeota. Our results could be useful for the better understanding of the ecological effects of heavy metals on the abundance and diversity of soil ammonia oxidizers.  相似文献   
8.
Five successive batches of fattening pigs were raised, each during a four month period, on a totally concrete slatted floor in one experimental room and on straw based deep litter in another. The rooms were automatically ventilated to maintain a constant ambient temperature. Available floor space was of 0.75 m2 per pig kept on the slatted floor and 1.20 m2 per pig kept on the deep litter. With this last system, about 46 kg of straw were supplied per pig throughout a fattening period. The slurry pit was emptied and the litter removed after each batch. Once a month, the emissions of ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2), and water vapour (H2O) were measured continuously for 6 consecutive days by infra-red photoacoustic detection.The performance of the animals was not significantly different according to the floor type.Gaseous emissions from pigs raised on the slatted floor and on the deep litter were, respectively, 6.2 and 13.1 g per pig per day for NH3, 0.54 and 1.11 g per pig per day for N2O, 16.3 and 16.0 g per pig per day for CH4, 1.74 and 1.97 kg per pig per day for CO2 and 2.48 and 3.70 kg per pig per day for H2O. Except for the CH4 emissions, all the differences were significant (P < 0.001). Thus, pig fattening on deep litter releases nearly 20% more greenhouse gases than on slatted floor, with 2.64 and 2.24 kg of CO2-equivalents, respectively (P < 0.001). Whatever the floor type, emissions increased from the beginning to the end of the fattening periods by about 5 times for NH3, 4 times for N2O, 3 times for CH4 and 2 times for CO2 and H2O. Correlation coefficients between CO2-emissions and H2O, NH3 and CH4 emissions were, on average for both floor types, 0.82, 0.77 and 0.74, respectively.Although rearing pigs on straw generally has a good brand image for the consumer, this rearing system produces more pollutant gases than keeping pigs on slatted floors.  相似文献   
9.
A 2 × 2 factorial experiment was conducted to investigate the interaction between cereal type (wheat vs. barley) and exogenous enzyme supplementation (with or without) on odour concentration and ammonia emissions in grower–finisher pigs. The enzyme supplement used contained Endo-1, 3 (4)-β-glucanase (EC 3.2.1.6) and Endo-1, 4-β-xylanase (E.C 3.2.1.8). The diets were formulated to contain similar levels of digestible energy and lysine. The experimental treatments were as follows: (1) wheat-based diet, (2) wheat-based diet containing a β-glucanase and β-xylanase mixed enzyme supplement, (3) barley-based diet and (4) barley-based diet containing a β-glucanase and β-xylanase mixed enzyme supplement. The diets were offered to the pigs for 4 weeks and this was repeated 4 times (n = 4). Odour and ammonia emissions were measured on days 9, 11, 14, 16, 21 and 23 of each experimental period. Odour samples were collected in 20-litre Nalophan bags and analysed for odour concentration using an ECOMA Yes/No Olfactometer. Ammonia concentrations were measured using Dräger tubes. There was a cereal × enzyme interaction in odour emission rates (P < 0.05) and in ammonia emissions (P < 0.01). The addition of an enzyme supplement increased odour emissions and had no effect on ammonia emissions in the barley-based diet. The enzyme supplementation had no effect on odour but decreased ammonia emissions in the wheat based diet.  相似文献   
10.
为探究水分和氮肥增效剂对夏玉米生长及水肥利用的综合影响,通过设置40 mm(W1)和60 mm(W2)两个灌水水平下不施氮肥(N0)、施用氮肥(U)、氮肥+硝化抑制剂(U+DCD)、氮肥+脲酶抑制剂(U+NBPT)、氮肥+双效抑制剂(U+N+D)5种氮肥施用措施,开展夏玉米田间试验。结果表明:相较于施用氮肥处理,氮肥配施增效剂可以显著提高夏玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力,增幅分别为5.92%~13.82%、5.85%~18.07%、11.12%~24.30%、12.35%~41.83%和5.93%~13.80%,其中氮肥配施双效抑制剂效果较优;氮肥配施脲酶抑制剂和双效抑制剂可以降低夏玉米农田土壤氨挥发累积量和成熟期土壤硝态氮残留量,前者效果最优。相比于W1,W2水平下氮肥配施双效抑制剂处理玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力分别提高10.54%、15.51%、19.40%、20.31%和27.36%;氮肥配施脲酶抑制剂处理农田土壤氨挥发累积量和硝态氮残留量分别降低11.33%和48.46%。综合考虑夏玉米施肥灌水方案的经济效益、环境效益、水肥利用效率和玉米植株生长,构建模糊综合评价体系,得到最优处理为灌水量60 mm下氮肥配施双效抑制剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号