首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
林业   1篇
基础科学   1篇
  5篇
综合类   2篇
水产渔业   1篇
  2017年   1篇
  2014年   1篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
采用Micaps 3.1资料、赣州探空资料、宜春风廓线(WPRD,60 min)风场产品以及吉安自动观测系统资料,分析2012年11月18—19日吉安一次持续性平流辐射大雾天气过程的大尺度天气背景、动力和热力结构特征及其演变等,揭示了这次平流辐射大雾过程的形成和维持机制。结果表明,这是冷暖平流在有利条件下经过辐射冷却后形成的平流辐射雾。在有利的大尺度背景条件下,暖平流移动到冷的下垫面和冷平流移向较暖的近地层,同时地表净辐射进一步加强近地层冷却,是此次大雾过程的触发和加强机制。特殊的温度场结构增加了低层暖湿空气和下垫面之间的温差,近地层至低层弱的辐合和垂直上升运动有助于小风的维持和稳定;充足的水汽为大雾长时间维持提供了有利条件。近地层风速增大和低层逆温层、湿度层消失是这次连续性平流辐射雾消散的主要原因。  相似文献   
2.
The ecosystem carrying capacity for aquaculture cage farming in South Australia is based on guidelines that the maximum feed rates (and farmed fish biomass) be determined such that the concentration c of a given dissolved nutrient does not exceed a prescribed value (say cP). The problem then is one of relating the nutrient flux F, due to feeding, to the tracer concentration c. To this end the evolution of concentration is modelled using the depth-averaged advection–diffusion equation for a constant source flux F over a finite area cage (or lease) and for both constant and time dependent (tidal) velocities. The divergence theorem is applied to this equation to obtain a new scale estimate of the relation between the flux F and the maximum concentration cmax of a nutrient in the cage region: cmax  F·T*, where T* is a time scale of cage “flushing” that involves both advection and diffusion. The maximum allowed nutrient flux F (and carrying capacity of fish biomass) can then be simply estimated from: F  cP/T*. New semi-analytic solutions of the advection–diffusion equation for a finite (cage) source are then derived to explore the physics of concentration evolution for constant and tidally varying currents, and to show that the estimate cmax  F·T* is surprisingly robust and generally within 40% of the exact values for a wide set of advective/diffusive parameters. The results generally should find application in other finite source flux problems in the coastal oceans including desalination plants and waste water outfalls.  相似文献   
3.
Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397–403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime ecosystem respiration.  相似文献   
4.
Turbulence within open canopies is shown to undergo a dramatic change in character during the transition from convective to stable conditions. In convective conditions the flow within the canopy is coupled through turbulent exchange to the flow aloft. As the transition proceeds, the within- and above-canopy flows decouple and vertically coherent waves form within the canopy. The intensity of above-canopy turbulence is not a good indicator of flow decoupling. Within-canopy waves can lead to large random error in the measurement of the change of storage and the advection terms in the mass balance equation. More importantly, errors associated with sampling over incomplete wave cycles will inevitably be combined with true advective flux divergences at non-ideal sites. Quantitative estimates of likely errors on storage of heat and CO2 within the canopy are presented.  相似文献   
5.
路爽  孙凤华  孟鹏  李大为  侯亚红 《安徽农业科学》2011,39(20):12339-12341
分析了2009年11月30日~12月2日沈阳地区持续性大雾天气的发生机理,揭示出沈阳地区平流雾的典型特征。结果表明,此次大雾天气发生于冬季高空槽前的暖湿气流中,雾区范围广、强度强、持续时间长,大雾随着高空槽所携带的冷空气过境逐渐消散;逆温层的高度变化可以作为大雾发生、发展、消散的预报着眼点。  相似文献   
6.
Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant differences were document in sapflow rates between the five study species, suggesting that selection of species is important for enhancing specific riparian buffer functions. However, more information is needed on water use patterns among diverse species growing under different climatic and biophysical conditions to assist policy and management decisions regarding effective buffer design.  相似文献   
7.
The advection initiative ADVEX within CarboEurope-IP conducted advection experiments at three European coniferous sites in 2005 and 2006. All experiments shared the same geometry and instrumentation. Data of the ADVEX experiments were used to calculate advective fluxes of carbon dioxide and sensible heat using exactly the same method. However, the advective flux of sensible heat can be assessed more easily than the carbon dioxide flux with its associated complex measurements of gas concentrations. We explored the possibility to use advective fluxes of sensible heat as a proxy for the corresponding flux of carbon dioxide despite somewhat differing sinks and sources. On average, advective fluxes of sensible heat were of opposite sign in relation to the advective fluxes of carbon dioxide for the three investigated sites, especially during nighttime. Therefore, the respective gradients were of opposite sign, on average, for vertical and (to a lesser extent) horizontal direction. This is not as obvious for horizontal direction as for the vertical direction. A scheme is presented to explain the correlation of the respective gradients for different conditions. Based on the gained insights and regression statistics, two simple empirical models were tested to derive advective fluxes of carbon dioxide from advective fluxes of sensible heat. Our results suggest that the advective flux of sensible heat could be taken as an indicator concerning the presence and sign of carbon dioxide advection. However, the suitability of advective fluxes of sensible heat as a quantitative proxy for advective fluxes of carbon dioxide is more problematic because the representativeness including the magnitude of advection derived from advection measurements is not yet clarified. An inspection of the budget of sensible heat and carbon dioxide revealed considerable changes by advection. The results indicate that the budget of carbon dioxide might be generally more affected by the investigated non-turbulent advective fluxes than the budget of sensible heat.  相似文献   
8.
By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-s) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how δ13CR-s is affected by both contributions of multiple carbon sources to respiration and fractionation due to soil gas transport. In this study, we measured potential isotopic sources to determine their contributions to δ13CR-s and we performed a series of experiments to investigate the impact of soil gas transport on δ13CR-s estimates. The objectives of these experiments were to: i) compare estimates of δ13CR-s derived from aboveground and belowground techniques, ii) evaluate the roles of diffusion and advection in a forest soil on the estimates of δ13CR-s, and iii) determine the contribution of new and old carbon sources to δ13CR-s for a Douglas-fir stand in the Pacific Northwest during our measurement period. We found a maximum difference of −2.36‰ between estimates of δ13CR-s based on aboveground vs. belowground measurements; the aboveground estimate was enriched relative to the belowground estimate. Soil gas transport during the experiment was primarily by diffusion and the average belowground estimate of δ13CR-s was enriched by 3.8-4.0‰ with respect to the source estimates from steady-state transport models. The affect of natural fluctuations in advective soil gas transport was little to non-existent; however, an advection-diffusion model was more accurate than a model based solely on diffusion in predicting the isotopic samples near the soil surface. Thus, estimates made from belowground gas samples will improve with an increase in samples near the soil surface. We measured a −1‰ difference in δ13CR-s as a result of an experiment where advection was induced, a value which may represent an upper limit in fractionation due to advective gas transport in forest ecosystems. We found that aboveground measurements of δ13CR-s may be particularly susceptible to atmospheric incursion, which may produce estimates that are enriched in 13C. The partitioning results attributed 69-98% of soil respiration to a source with a highly depleted isotopic signature similar to that of water-soluble carbon from foliage measured at our site.  相似文献   
9.
Practically all of the extensive body of research on evapotranspiration (ET) in agricultural systems has been done for open fields. There is a lack of information on how the microclimate variability within silvopasture systems affects water requirements of forages. Small 26 cm diameter, 23 cm deep lysimeters planted with either orchardgrass (Dactylis glomerata L.) or tall fescue (Schedonorus phoenix (Scop.) Holub) were placed in the ground along the north and south edge of two 15 m wide × 50 m deep notches cleared into a mature second growth hardwood forest. One notch opened to pasture on the east receiving more early day solar radiation and one to pasture on the west receiving more wind and late day solar radiation. There was no significant difference in ET between orchardgrass and tall fescue. North edges, receiving more direct beam radiation, had significantly higher ET (39%) than south edges which received a higher percentage of diffuse radiation. The west notch had significantly higher ET (11%) than the east notch. At the sunniest sites, advection provided 20% of the energy used for ET while at the shadiest sites it provided more than half (56%) with the rest provided by incident solar radiation. Dates where photosynthetically active radiation (PAR) was restricted by clouds resulted in decreased ET relative to PAR compared to more sunny days. However, sites where PAR was restricted by tree shade had higher ET relative to PAR than more open sites. These results indicate tree modification of microclimate does not decrease forage ET to the extent that PAR is decreased.  相似文献   
10.
The ecosystem fluxes of mass and energy were quantified for a riparian cottonwood (Populus fremontii S. Watson) stand, and the daily and seasonal courses of evapotranspiration, CO2 flux, and canopy conductance were described, using eddy covariance. The ecosystem-level evapotranspiration results are consistent with those of other riparian studies; high vapor pressure deficit and increased groundwater depth resulted in reduced canopy conductance, and the annual cumulative evapotranspiration of 1095 mm was more than double the magnitude of precipitation. In addition, the cottonwood forest was a strong sink of CO2, absorbing 310 g C m−2 from the atmosphere in the first 365 days of the study. On weekly to annual time scales, hydrology was strongly linked with the net atmosphere-ecosystem exchange of CO2, with ecosystem productivity greatest when groundwater depth was ∼2 m below the ground surface. Increases in groundwater depth beyond the depth of 2 m corresponded with decreased CO2 uptake and evapotranspiration. Saturated soils caused by flooding and shallow groundwater depths also resulted in reduced ecosystem fluxes of CO2 and water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号