首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   4篇
林业   5篇
农学   47篇
基础科学   4篇
  6篇
综合类   1篇
农作物   5篇
畜牧兽医   15篇
园艺   1篇
植物保护   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   8篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   8篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
2.
A. K. Mukherjee    T. Mohapatra    A. Varshney    R. Sharma  R. P. Sharma   《Plant Breeding》2001,120(6):483-497
Brassica juncea (L.) Czern & Coss is widely grown as an oilseed crop in the Indian subcontinent. White rust disease caused by Albugo candida (Pers.) Kuntze is a serious disease of this crop causing considerable yield loss every year. The present study was undertaken to identify molecular markers for the locus controlling white rust resistance in a mustard accession, BEC‐144, using a set of 94 recombinant inbred lines (RILs). The screening of individual RILs using an isolate highly virulent on the popular Indian cultivar ‘Varuna’ revealed the presence of a major locus for rust resistance in BEC‐144. Based on screening of 186 decamer primers employing bulked segregant analysis (BSA), 11 random amplified polymorphic DNA markers were identified, which distinguished the parental lines and the bulks. Five of these markers showed linkage with the rust resistance locus. Two markers, OPN0l000 and OPB061000, were linked in coupling and repulsion phases at 9.9 cM and 5.5 cM, respectively, on either side of the locus. The presence of only two double recombinants in a population of 94 RILs suggested that the simultaneous use of both markers would ensure efficient transfer of the target gene in mustard breeding programmes.  相似文献   
3.
伤口愈合是一种复杂的现象,是机体控制的系统对细胞进行精微同步调节的结果.然而,一系列可变因素通过多种方法来影响此过程.通常来说,机体内的各种维生素,矿物质,脂肪酸,氨基酸和其他营养物质对该过程起着直接或间接的重要影响.不仅如此,各种疾病与无数的外界因素也以不可预料的形式影响着该过程.因此,任何治疗方法都是努力控制上述因素以使机体处于最佳恢复状态.因此,当这种天然愈合过程被打断,机体的伤口就会转变为慢性,或者出现溃疡.  相似文献   
4.
5.
Introgression lines (ILs) of groundnut with enhanced resistance to rust and late leaf spot (LLS) recorded increased pod and haulm yield in multilocation testing. Marker‐assisted backcrossing (MABC) approach was used to introgress a genomic region containing a major QTL that explains >80% of phenotypic variance (PV) for rust resistance and 67.98% PV for LLS resistance. ILs in the genetic background of TAG 24, ICGV 91114 and JL 24 were evaluated for two seasons to select 20 best ILs based on resistance, productivity parameters and maturity duration. Multilocation evaluation of the selected ILs was conducted in three locations including disease hot spots. Background genotype, environment and genotype × environment interactions are important for expression of resistance governed by the QTL region. Six best ILs namely ICGV 13192, ICGV 13193, ICGV 13200, ICGV 13206, ICGV 13228 and ICGV 13229 were selected with 39–79% higher mean pod yield and 25–89% higher mean haulm yield over their respective recurrent parents. Pod yield increase was contributed by increase in seed mass and number of pods per plant.  相似文献   
6.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   
7.
Use of diverse germplasm is a key factor which allows high level of resolution due to extensive recombination in the history. Therefore, population used in association mapping should posses as many phenotypes as possible. One of the methods to obtain most of the phenotypes is to construct the core collection. The ICRISAT foxtail millet core collection consisting of 155 accessions was genotyped using 72 simple sequence repeat (SSR) markers to investigate the genetic diversity, population structure and linkage disequilibrium (LD). A high degree of molecular diversity among the accessions was found, with an average of 16.69 alleles per locus. STRUCTURE analyses classify the accessions into four subpopulations (SP) based on SSR allelic diversity. The Neighbor joining clustering and the principal coordinate analysis were in accordance with the racial classification. The distribution of molecular genetic variation among and within the four SP and three races showed high degree of variability within each group, and low level of genetic distance (GD) among the groups. LD decay of <40 cM of GD in foxtail millet core collection was observed, which suggests that it could be possible to achieve resolution down to the 40 cM level. From this investigation, it is evident that the foxtail millet core collection developed at ICRISAT is very diverse and could be a valuable resource for trait association mapping, crop breeding and germplasm management.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号