首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
林业   1篇
农学   1篇
基础科学   3篇
  19篇
综合类   2篇
农作物   12篇
水产渔业   5篇
畜牧兽医   18篇
园艺   1篇
植物保护   5篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1981年   1篇
排序方式: 共有67条查询结果,搜索用时 203 毫秒
1.
Nixtamalization is an ancient process developed by the Mesoamerican cultures. Initially, volcanic ashes were used and then calcium hydroxide in commercial production, and more recently nixtamalization with calcium salts (NCS) has been proposed. The aim of this study was to evaluate the effect of NCS on carbohydrate digestibility and antioxidant capacity in the elaboration of blue maize tortillas. NCS in blue tortillas showed a high amount of total dietary fiber (14.27 g/100 g), the main fraction being insoluble dietary fiber. The contents of resistant starch and slowly digestible starch did not change with the nixtamalization process. The predicted glycemic index value was lower in blue tortillas with the NCS process (58) than with the traditional nixtamalization process (71). In general, NCS in blue tortillas presented a higher antioxidant capacity than traditional tortillas (ferric reducing antioxidant power method), indicating that phenolics present in blue maize maintain their activity after cooking. It can be concluded that the nutraceutical features (high dietary fiber content and antioxidant capacity) of blue maize tortillas are enhanced when they are elaborated with the NCS process.  相似文献   
2.
A proteinaceous inhibitor with high activity against trypsin-like serine proteinases was purified from seeds of the tamarind tree (Tamarindus indica) by gel filtration on Shephacryl S-200 followed by a reverse-phase HPLC Vidac C18 TP. The inhibitor, called the tamarind trypsin inhibitor (TTI), showed a Mr of 21.42 kDa by mass spectrometry analysis. TTI was a noncompetitive inhibitor with a Ki value of 1.7 x 10(-9) M. In vitro bioinsecticidal activity against insect digestive enzymes from different orders showed that TTI had remarkable activity against enzymes from coleopteran, Anthonomus grandis (29.6%), Zabrotes subfasciatus (51.6%), Callosobruchus maculatus (86.7%), Rhyzopertha dominica(88.2%), and lepidopteron, Plodia interpuncptella (26.7%), Alabama argillacea (53.8%), and Spodoptera frugiperda (75.5%). Also, digestive enzymes from Diptera, Ceratitis capitata (fruit fly), were inhibited (52.9%). In vivo bioinsecticidal assays toward C. capitata and C. maculatus larvae were developed. The concentration of TTI (w/w) in the artificial seed necessary to cause 50% mortality (LD50) of larvae was 3.6%, and that to reduce mass larvae by 50.0% (ED50) was 3.2%. Furthermore, the mass C. capitata larvae were affected at 53.2% and produced approximately 34% mortality at a level of 4.0% (w/w) of TTI incorporated in artificial diets.  相似文献   
3.
土壤添加沼渣对温室气体排放及小麦生长的影响   总被引:1,自引:1,他引:0  
Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat(Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses(carbon dioxide(CO_2), methane(CH_4), and nitrous oxide(N_2O)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 × 10~4colony-forming units(CFU) g-~(1)dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency(EPA). After 28 d, 17% of the organic C(436 g kg~(-1)dry digestate) and 8% of the organic N(6.92 g kg~(-1)dry digestate)were mineralized. Emissions of CO_2 and CH_4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N_2O emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH_4 and CO_2 when applied to a soil cultivated with wheat, but increased emission of N_2O.  相似文献   
4.
Shi drum specimens were maintained under four different photoperiod regimes: a natural photoperiod regime (16L:8D), constant light (24L), equal durations of light and dark (12L:12D) and a reduced number of daylight hours (6L:18D) from hatching until the end of larval metamorphosis. Specimens were then kept under natural photoperiod conditions until 111 days post-hatching. Muscle and body parameters were studied. During the vitelline phase, there was little muscle growth and no photoperiod effects were reported; however, a monolayer of red muscle and immature white muscle fibres were observed in the myotome. At hatching, external cells (presumptive myogenic cells) were already present on the surface of the red muscle. At the mouth opening, some presumptive myogenic cells appeared between the red and white muscles. At 20 days, new germinal areas were observed in the apical extremes of the myotome. At this stage, the 16L:8D group (followed by the 24L group) had the longest body length, the largest cross-sectional area of white muscle and the largest white muscle fibres. Conversely, white muscle hyperplasia was most pronounced in the 24L group. Metamorphosis was complete at 33 days in the 24L and 12L:12D groups. At this moment, both groups showed numerous myogenic precursors on the surface of the myotome as well as among the adult muscle fibres (mosaic hyperplastic growth). The 16L:8D group completed metamorphosis at 50 days, showing a similar degree of structural maturity in the myotome to that described in the 24L and 12L:12D groups at 33 days. When comparing muscle growth at the end of the larval period, hypertrophy was highest in the 16L:8D group, whereas hyperplasia was higher in the 24L and 16L:8D groups. At 111 days, all groups showed the adult muscle pattern typical of teleosts; however, the cross-sectional area of white muscle, white muscle fibre hyperplasia, body length and body weight were highest in the 24L group, followed by the 12L:12D group; white muscle hypertrophy was similar in all groups. Larval survival was higher under natural photoperiod conditions compared to all the other light regimes.  相似文献   
5.
6.
Nixtamalization of maize grain is an ancient process that until now is used for tortilla production. This thermal-alkaline process produces important changes in morphology and rheological characteristics of starch that is the major component of maize. The aim of this study was to evaluate changes in the morphological and rheological properties of starch brought by nixtamalization of maize using image analysis and dynamic rheometry, respectively. Nixtamalized maize starch (NS) presented granule sizes higher than starch isolated from raw maize (S) due to the partial swelling produced in the nixtamalization process. In dynamic tests during the retrogradation kinetics, an inverse effect of the temperature was observed in the re-arrangement of starch components. NS was affected due to the thermal-alkaline process presenting an annealing that provoked a reduction in its ability to develop gels. This information is important during the processing of nixtamalized maize to masa and tortilla production.  相似文献   
7.
8.
With classical sheet plastination techniques such as E12, the level and thickness of the freeze‐cut sections decide on what is visible in the final sheet plastinated sections. However, there are other plastination techniques available where we can look for specific anatomical structures through the thickness of the tissue. These techniques include sectioning and grinding of plastinated tissue blocks or thick slices. The ultra‐thin E12 technique, unlike the classic E12 technique, starts with the plastination of a large tissue block. High temperatures (30–60°C) facilitate the vacuum‐forced impregnation by decreasing the viscosity of the E12 and increasing the vapour pressure of the intermediary solvent. By sectioning the cured tissue block with a diamond band saw plastinated sections with a thickness of <300 μm can be obtained. The thickness of plastinated sections can be further reduced by grinding. Resulting sections of <100 µm are suitable for histological staining and microscopic studies. Anatomical structures of interest in thick plastinate slices can be followed by variable manual grinding in a method referred to as Tissue Tracing Technique (TTT). In addition, the tissue thickness can be adapted to the transparency or darkness of tissue types in different regions of the same plastinated section. The aim of this study was to evaluate the advantages of techniques based on sectioning and grinding of plastinated tissue (E12 ultra‐thin and TTT) compared to conventional sheet‐forming techniques (E12).  相似文献   
9.
Epoxy plastination techniques were developed to obtain thin transparent body slices with high anatomical detail. This is facilitated because the plastinated tissue is transparent and the topography of the anatomical structures well preserved. For this reason, thin epoxy slices are currently used for research purposes in both macroscopic and microscopic studies. The protocol for the conventional epoxy technique (E12) follows the main steps of plastination—specimen preparation, dehydration, impregnation and curing/casting. Preparation begins with selection of the specimen, followed by freezing and slicing. Either fresh or fixed (embalmed) tissue is suitable for epoxy plastination, while slice thickness is kept between 1.5 and 3 mm. Impregnation mixture is made of epoxy E12 resin plus E1 hardener (100 ppw; 28 ppw). This mixture is reactive and temperature sensitive, and for this reason, total impregnation time under vacuum at room laboratory temperature should not last for more than 20–24 hr. Casting of impregnated slices is done in either flat chambers or by the so‐called sandwich method in either fresh mixture or the one used for impregnation. Curing is completed at 40°C to allow a complete polymerization of the epoxy‐mixture. After curing, slices can be photographed, scanned or used for anatomical study under screen negatoscope, magnification glass or fluorescent microscope. Based on epoxy sheet plastination, many anatomical papers have recent observations of and/or clarification of anatomical concepts in different areas of medical expertice.  相似文献   
10.
Biochemical and nutritional changes were studied during the ripening process of three Opuntia morphospecies with different ripening behavior: Naranjona (O. ficus-indica), Blanca Cristalina (Opuntia sp.), and Esmeralda (Opuntia sp.) of early, early-intermediate, and intermediate-late ripening, respectively. In loss of fresh weight, Naranjona showed the highest values, while in Blanca Cristalina and Esmeralda, a discrete weight loss was found. No significant differences were found among morphospecies in soluble solids, total titratable acidity and pH during the postharvest days. Blanca Cristalina and Esmeralda showed an increase in the content of carotenoids, while these diminished in Naranjona. The cell wall enzymes evaluated showed particular behaviors during the ripening of each morphospecies suggesting a fine biochemical control and not a clear relationship between fruit softening and enzyme activity. This study provides basic information on prickly pear ripening, in order to understand this process for its control and for improving shelf life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号