首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   4篇
林业   11篇
农学   23篇
基础科学   1篇
  27篇
综合类   3篇
农作物   4篇
水产渔业   1篇
畜牧兽医   15篇
园艺   3篇
植物保护   7篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   12篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   10篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   3篇
  1984年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):520-522
Recessively inherited gene Sr2 has provided the basis of durable resistance to stem rust (caused by Puccinia graminis tritici) in wheat (Triticum aestivum L.) worldwide. The associated earhead and stem melanism or ‘pseudo‐black chaff’ is generally used as a marker for this gene. Sr2 has been postulated in many wheat cultivars of India including ‘Lok 1’, based on associated pseudo‐black chaff in adult plants, and leaf chlorosis in seedlings. However, dominant inheritance of the resistance factor operating in ‘Lok 1’, and a 13 : 3 (resistant : susceptible) F2 segregation in the ‘Sr2‐line’ (‘Chinese Spring’6 × ‘Hope’ 3B) × ‘Lok 1’ cross confirmed that Sr2 was absent in ‘Lok 1’. Susceptible plants with a pseudo‐black chaff phenotype were observed in F2 populations of ‘Agra Local’ (susceptible) × ‘Lok 1’, and the ‘Sr2‐line’ × ‘Lok 1’ crosses. Most of the F3 families derived from the susceptible F2 segregants with pseudo‐black chaff phenotypes were true breeding for the expression of pseudo‐black chaff with susceptibility to stem rust. Thus, linkage of pseudo‐black chaff with Sr2 in wheat can be broken, and hence, caution may be exercised in using pseudo‐black chaff as a marker for selecting Sr2 in breeding programmes.  相似文献   
2.
Feeding and casting activity of Amynthas alexandri fed on corn, wheat leaves, and mixed grasses were monitored in laboratory cultures. Casts were produced on the surface and sides of the containers. Food consumption varied from 36.5 to 69 mg g–1 live worm day–1. Cast production ranged from 3.95 to 5.9 mg g–1 live worm day–1. The C:N ratio in casts in laboratory cultures (11.17) and in field samples (8.84) was consistently lower than the corresponding ratio in the parent soil (13.19 and 10.54, respectively). This was probably due to mineralization of plant-derived organic material during passage through earthworms with consequent low C:N ratios.  相似文献   
3.
Acorus calamus is an important medicinal plant which has been used in Indian traditional medicine since time immemorial. Various bioactive molecules, viz., acorin, α- and β-asarone, asaryldehyde, caryophylene, isoasarone, methylisoeugenol, and safrol have been isolated from this plant. However, the use of this plant for medicinal purpose has been recently banned due to the high toxic property of β-asarone. The triploid Acorus calamus is reported to be low in β-asarone content and thus found to be the ideal raw material for medicinal use. The present investigation represents our finding for successful in vitro clonal propagation of the elite triploid accessions of Acorus calamus for mass propagation. In the dual-phase culture system consisting of agar-solidified Murashige and Skoog medium overlaid by liquid fraction of the same medium, maximum multiple shoot induction was favored by supplementation of α-naphthaleneacetic acid (0.5 mg L−1) and 6-benzylaminopurine (2.0 mg L−1). In vitro rooting of the microshoots was maximum in the medium supplemented with indolebutyric acid at 2.0 mg L−1. The well-rooted microshoots could be successfully hardened and transplanted in the field. This result can be reproduced and is a viable protocol for successful clonal propagation of the seedless triploid Acorus calamus for conservation and sustainable development.  相似文献   
4.
Many expert-designed agroforestry projects enunciated in 1970s around the world, particularly in the developing countries, had uneven success due to inadequate adoption or abandonment after adoption. There are many empirical studies on factors affecting on-farm tree cultivation mainly where expert-designed agroforestry programmes were introduced but lacking in case of traditional agroforestry. Moreover, the concern to identify key factors influencing on-farm tree growing is gaining importance. The present study identifies key factors in on-farm tree growing based on investigation of traditional agroforestry using logistic regression approach. The study is based on household survey of 401 households located in Indian Western Himalaya. The factors affecting on-farm tree growing were grouped into: biophysical (included land use and infrastructural aspects) and social. Models predicting on-farm tree growing for each category were developed and key factors affecting on-farm tree growing in the respective category were identified. A composite model was also developed by combining biophysical and social factors. In the present study, farm size, agroclimatic zone, soil fertility, mobility and importance of tree for future generations respectively were the key factors which influenced tree growing. In contrast to many previous studies which considered either biophysical or social factors, the composite model in the present study reveals that both biophysical and social factors are simultaneously important in motivating the farmers to grow trees on their farms in traditional agroforestry. Moreover, the present study open vistas for using farmers’ experience and knowledge of adoption of agroforestry to stimulate on-farm tree growing. The wider implication of the study is that biophysical as well as social variables should be considered together in designing suitable agroforestry systems in various parts of the world.  相似文献   
5.
The present study aimed at selection of efficient bacterial isolates with multiple plant growth-promoting (PGP) traits at variable doses of chemical fertilizers for enhanced wheat productivity and sustenance of soil health. Ten bacterial isolates from wheat (rhizosphere soil and root endosphere) were screened for PGP traits (indole acetic acid, phosphate solubilization, siderophore production, and ammonia production). Only three isolates (B2, SIR1, and BIS2) possessed all PGP traits. Net house evaluation of these isolates at graded doses of chemical fertilizers revealed that the potential of B2 isolate is significantly superior for enhancing wheat yield and soil properties. On the basis of 16S rDNA analysis, the potential isolate (B2) was identified as Serratia marcescens. Conjoint use of the B2 isolate at 80% recommended doses of fertilizers (RDF) significantly increased wheat growth and saved 18 kg nitrogen and 10 kg phosphorous on per hectare basis. The developed module not only increases profitability but also protects the environment and sustains soil health.  相似文献   
6.
Homo and copolymers of monomers 2-(N-phthalimido) ethylmethacrylate (NPEMA) and 4-Chloro-3-methyl phenyl methacrylate (CMPMA) were prepared in N,N-dimethyl formamide (DMF) solution at 70 °C using 2,2-azobisisobutyronitrile (AIBN) as initiator. The solution of poly(NPEMA-co.-CMPMA) in 20 % DMF was used to fabrication electrospun nanofiber by electrospinning technique. IR data were primarily employed to characterize polymers. The formation of nanofibers was identified by SEM study. The metal ion uptake capacity of copolymers and nanofibers were obtain by batch equilibrium method using different metal ion solution. The antimicrobial activity of the copolymers, Polymer nanocomposites and their nanofibers were tested against different microbial organisms by using quantitative method. The main objective of this investigation was to find whether nanofiber are better remover of metal ions compared to copolymers. It was also aimed to study the efficacy of nanofibers of copolymers and copolymer composite with nano Ag as water sanitizer.  相似文献   
7.
Inorganic fertilizers alone cannot sustain high levels of productivity. This study was conducted to determine whether higher productivity of capsicum could be achieved by conjoint application of chemical fertilizers and plant growth promoting rhizobacteria (PGPR). Four PGPR isolates (RS2, RS3, RS4, and RS7) from capsicum roots and rhizosphere were evaluated at Solan, Himachal Pradesh (India), during 2009–2012. Two best performers: RS2 and RS7 were tried singly or in consortium with different levels of chemical fertilizers under field conditions, Randomized Block Design, replicated thrice. The conjoint use of 100% recommended nitrogen, phosphorus, and potassium (NPK) doses through chemical fertilizers (RDF) plus PGPR significantly increased fruit yield, plant height, and biomass by 37%, 20%, and 30%, respectively, over sole application of 100% RDF (control). Further, response of capsicum to 80% RDF plus PGPR was statistically comparable with control. The results, therefore, indicate the potential of isolated PGPR strains to substitute about 20% NP fertilizers besides enhanced productivity of capsicum.  相似文献   
8.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   
9.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):517-519
The gene Lr34 has contributed to durable resistance to leaf rust caused by Puccinia triticina in wheat worldwide. The closely associated leaf tip necrosis is generally used as the gene's marker. Lr34 has been postulated in many Indian bread wheat cultivars including ‘C 306’, based on the associated leaf tip necrosis and a few other field and glasshouse observations. The present study showed monogenic control of adult‐plant resistance in ‘C 306’ to leaf rust pathotype 77‐5 (121R63‐1). The F2 segregation in the crosses between ‘C 306’ and the two known carriers of Lr34, ‘Line 897’ and ‘Jupateco 73’‘R’ fitted a digenic ratio. The F3 families derived from the susceptible F2 segregants were true breeding for susceptibility, proving the absence of Lr34 in ‘C 306’. The cross between ‘Line 897’ and ‘Jupateco 73’‘R’ did not segregate for susceptibility. Resistance in the cross ‘Agra Local’ (susceptible) × ‘C 306’ was associated with leaf tip necrosis, showing that the leaf rust resistance gene in ‘C 306’ was associated with leaf tip necrosis, but was different from Lr34. This gene is being temporarily designated as Lr‘C 306’. Hence, leaf tip necrosis cannot be considered as an exclusive marker for selecting Lr34 in wheat improvement.  相似文献   
10.
Isozyme banding pattern was studied in Guinea grass (Panicum maximum Jacq.), a widely cultivated grass having good fodder value. Similarity among 63 accessions collected from diverse sources was worked out using five enzyme systems (SOD, GOT, ACP, Esterase and Peroxidase) following horizontal starch gel electrophoresis. Biochemical markers such as isozymes are useful supplements in identifying the genetic variation present in any crop. A total of 35 clear and unambiguous bands were used for analysis of which 8 bands were monomorphic. Polymorphism exhibited by 27 bands from all five enzyme systems indicate presence of considerable diversity in this species. The dendrogram generated after UPGMA and SAHN cluster analysis using Jaccard genetic distance showed that 63 accessions from diverse geographical locations could be grouped in three main clusters, of which two could further be divided into sub-clusters. Although the clusters comprised members from different locations, most of the accessions from similar geographical locations tended to cluster in same group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号