首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   10篇
  国内免费   17篇
林业   6篇
农学   19篇
基础科学   11篇
  86篇
综合类   86篇
农作物   21篇
畜牧兽医   34篇
园艺   3篇
植物保护   3篇
  2023年   6篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   15篇
  2011年   17篇
  2010年   18篇
  2009年   18篇
  2008年   16篇
  2007年   15篇
  2006年   22篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   8篇
  2001年   15篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
1.
我国大豆最佳施肥量和种植密度评价   总被引:3,自引:1,他引:2  
施肥量和种植密度是影响大豆高产的重要因素。在收集了大量的大豆试验数据(1998~ 2017年)基础上,通过拟合氮、磷、钾肥用量和种植密度与产量之间的二次函数,得出最佳的施肥量和种植密度,通过逐步回归分析了施肥量和种植密度对大豆产量的影响。结果表明,我国春大豆和夏大豆的产量逐年增加,平均产量分别为 2 610和 2 724 kg/hm2。夏大豆最高产量下的氮、磷、钾肥用量分别为 N 96 kg/hm2、P2O5 80 kg/hm2和K2O 126 kg/hm2;春大豆最高产量下的氮、磷、钾肥用量分别为 N 71 kg/hm2、P2O5 108 kg/hm2和K2O 74 kg/hm2;实现夏、春大豆高产的最佳密度分别为 27万和 34万株/hm2。逐步回归分析显示,磷用量对春大豆产量影响最大,其次为钾肥和密度;在夏大豆产区,密度对产量影响最大,其次为磷肥用量。种植密度是大豆高产的关键因素,春、夏大豆需要提高种植密度获得高产,同时均应注重磷肥施用。  相似文献   
2.
优化施肥下长江流域冬小麦产量及肥料增产效应   总被引:1,自引:0,他引:1  
【目的】针对长江流域冬小麦不合理施肥带来的肥料利用率低的现状,探讨冬小麦产量分布特征及施用氮、磷和钾肥料的增产效应,为长江流域冬小麦肥料减施增效和优化养分管理措施提供依据。【方法】本文数据来源于国际植物营养研究所(IPNI)于2000—2018年在我国长江流域开展的田间试验,以及在中国知网(CNKI)数据库通过检索字段或字段组合(冬小麦、冬小麦+产量及冬小麦产量+肥料利用率等)得到的此期间关于长江流域冬小麦田间试验的论文,共1 732个田间试验。试验处理包括:优化施肥处理,农民习惯施肥,以及在优化施肥和农民习惯施肥基础上的不施氮肥、不施磷肥和不施钾肥处理,以探究长江流域各省(市)(四川、云南、贵州、重庆、湖北、安徽、江苏、浙江和上海)冬小麦在优化施肥下的可获得产量、产量反应、相对产量、农学效率和偏生产力特征。【结果】我国长江流域冬小麦优化施肥处理下的平均产量为6.6 t·hm-2,其中安徽省平均产量水平最高,为7.3 t·hm-2,重庆市最低,为3.6 t·hm-2。施用氮、磷和钾肥的平均产量反应分别为2.3、0.9和0.6 t·hm-2,但变异范围较大。氮、磷和钾肥平均相对产量分别为0.6、0.8和0.9,氮是小麦产量的主要限制因子。优化施肥处理的氮、磷和钾肥的平均农学效率分别为12.6、11.6和7.7 kg·kg-1,平均偏生产力分别为34.0、78.9和73.4 kg·kg-1。与农民习惯施肥措施相比,优化施肥处理平均增产0.5 t·hm-2,增幅为8.8%;氮、磷、钾肥的农学效率分别提高了41.1%、121.1%和84.6%;偏生产力分别提高了42.4%、23.5%和25.4%。【结论】优化施肥有效提高了长江流域冬小麦的产量和养分利用率,但各省(市)间存在一定差异且省(市)内变异较大。四川、云南、湖北和江苏省的部分地区具有较低的产量反应,说明具有较高的土壤养分供应,应因地制宜地制定养分优化管理方案。分析长江流域优化养分管理措施下的小麦产量反应和肥料利用率等参数,可以确定氮为小麦产量的第一限制因子。  相似文献   
3.
土家族是中国56个民族中重要的组成成分,土家族的文化发展与经济发展,在一定程度上影响着国家经济建设与发展。随着民族文化与经济的融合,我国政府以及相关部门更加关注土家族的经济建设与文化建设等问题,土家本土茶叶经济发展,是土家族经济建设中一个重要部分,同时土家族民间造物观是土家族文化中不可缺少的一部分,将茶叶包装设计与土家民间造物观相融合,是构建土家族茶叶品牌,提升土家族茶叶影响力的有效途径,本文针对这个问题进行几点分析和研究。  相似文献   
4.
  【目的】  推荐施肥是提高作物产量和肥料利用率的有效措施。基于产量反应的养分专家系统 (Nutrient Expert for Rice,NE) 易于操作,便于推广。通过大量田间试验,验证了其在东北一季稻上的应用效果。  【方法】  于2013—2018年在东北水稻主产区黑龙江省和吉林省共开展了115个田间试验,每个试验包括6个处理:1) 基于水稻养分专家系统推荐施肥处理 (NE);2) 农民习惯施肥措施处理 (FP);3) 基于测土配方施肥或当地农技部门推荐施肥的处理 (ST);4)~6) 分别为基于NE的不施氮 (N)、不施磷 (P) 和不施钾 (K) 处理,用于计算养分利用率。水稻收获期调查产量,依据肥料成本,计算净效益和肥料利用率。  【结果】  NE、FP和ST处理间的水稻产量无显著差异 (P = 0.185),但以NE处理的产量较高,平均为9068 kg/hm2,与FP和ST处理相比,分别增加了344和196 kg/hm2,其产量差随着NE系统不断优化趋于稳定。虽然NE处理的肥料成本 (TFC) 最高,但其净效益 (GRF) 比FP和ST处理分别高1043和537元/hm2,这部分效益都来自于产量的增量。养分回收率 (RE) 均以NE处理最高,与FP和ST处理相比,氮素回收率分别提高了3.3和2.3个百分点,磷素回收率分别提高了3.5和3.6个百分点,钾素回收率分别提高了7.3和4.6个百分点。与FP处理相比,NE处理的氮和磷的农学效率 (AE) 分别显著提高2.7 kg/kg (P = 0.022) 和4.1 kg/kg(P = 0.030),3个处理的钾素农学效率无显著差异。肥料偏生产力 (PFP) 的大小与施肥量呈显著负相关,NE和ST处理N的偏生产力显著高于FP处理 (P = 0.004),ST处理磷素偏生产力显著高于NE和FP处理 (P = 0.001),但FP处理钾素偏生产力高于NE和ST处理,并与NE处理差异达到了显著水平 (P = 0.028)。  【结论】  与以常规测土施肥为基础的推荐施肥相比,基于产量反应的养分专家系统 (NE系统) 的推荐施肥量和比例更符合作物对养分的需求,在吉林和黑龙江两个省份的大田试验中均获得了相同或更高的水稻产量。由于NE系统无论是否进行土壤测试都可用来进行推荐施肥,因而是更加方便和可行的一季稻施肥推荐方法。  相似文献   
5.
冬小麦养分专家推荐施肥系统在长江流域的可行性研究   总被引:2,自引:1,他引:1  
  【目的】  采用基于产量反应和农学效率的冬小麦养分专家系统的推荐施肥方法 (Nutrient Expert for wheat, NE),在长江流域开展田间试验,并通过与该地农民习惯施肥方法的比较,确定该系统在长江流域冬小麦应用的可行性。  【方法】  2019年于长江流域的四川、云南、安徽、湖北、江苏和浙江6省共布置了50个冬小麦田间试验,每个试验包括5个处理:小麦养分专家系统推荐施肥处理 (NE)、农民习惯施肥处理 (FP),以及基于NE处理的不施氮、不施磷和不施钾肥处理,从产量、经济效益、肥料利用率、氮损失和温室气体排放5个方面,比较了NE与FP的差异。  【结果】  与FP处理相比,NE处理显著降低了N、P2O5和K2O施用量57、10和8 kg/hm2 (P < 0.001),降幅分别达到了26.6%、13.3%和12.9%;小麦产量明显提高 (P < 0.001),平均增产365 kg/hm2,增幅为7.9%;显著降低了肥料成本 (P < 0.001),平均减少了429 元/hm2,降幅为20.9%;显著提高了经济效益,平均增加了1446 元/hm2,增幅为17.7%,且所有增加经济效益中有55.5%来自于产量的增加 (P < 0.001)。NE处理显著提高了长江流域冬小麦的肥料利用效率 (P < 0.001),与FP处理相比,氮、磷和钾农学效率分别提高了6.5、8.3和8.6 kg/kg,增幅分别为67.7%、143.1%和159.3%;氮、磷和钾偏生产力分别增加了10.9、17.9和24.8 kg/kg,增幅分别为49.1%、28.8%和34.4%;氮、磷和钾回收率分别增加了15.3、11.9和27.2个百分点,增幅分别为52.9%、132.2%和87.7%。NE处理较FP处理显著增加了地上部氮素吸收量 (P < 0.001) ,且显著减少了氮素损失 (P < 0.001),地上部氮素吸收量平均增加了3.0 kg/hm2,增幅为2.5%;活性氮损失强度平均减少N 4.0 kg/t,降幅为37.7%;N2O总排放量平均减少了0.7 kg/hm2,降幅为28.0%;温室气体排放强度平均减少CO2 eq 308.4 kg/t,降幅为36.5%。  【结论】  在长江流域冬小麦生产中,采用基于小麦产量反应和农学效率的NE推荐施肥方法,可较农民习惯施肥 (FP) 平均分别降低26.6%、13.3%和12.9%的氮磷钾肥施用量,同时提高冬小麦产量7.9%,显著提高经济效益和肥料利用率,并有效地降低活性氮损失强度和温室气体排放量,适用于我国长江流域冬小麦的推荐施肥。  相似文献   
6.
为揭示小麦秸秆还田及施肥对潮土土壤有机碳演变的影响,以指导华北潮土培肥增产。在辛集马兰设置22 a潮土长期定位试验(1992-2014年,试验包含4个处理,NP:不施钾+秸秆不还田; NPK:平衡施肥+秸秆不还田;NPS:不施钾+小麦秸秆还田; NPKS:平衡施肥+小麦秸秆还田),研究不同施肥措施下试验年限、碳投入、碳平衡与土壤有机碳含量的响应关系。结果表明:所有处理表层(0~20 cm)土壤有机碳含量随时间均呈增加趋势,NP、NPK、NPS、NPKS增加速率分别为0. 06,0. 17,0. 25,0. 34 g/(kg. a),且22 a后各处理土壤有机碳储量均增加,分别增加为2. 2,6. 2,5. 9,8. 9 t/hm~2,固碳速率分别为0. 10,0. 28,0. 27,0. 40 t/(hm~2·a)。土壤有机碳储量变化与累积碳投入变化量呈线性相关关系(y=0. 091x-0. 241,R~2=0. 360*),在小麦秸秆还田下,维持初始有机碳水平的累积碳投入量为2. 65 t/hm~2,固碳效率为9. 1%。通过边界线分析可知,小麦和玉米生产中稳产高产最低土壤有机碳含量分别为9. 47,9. 04 g/kg,未达到此值时土壤有机碳含量每增加1 g/kg,小麦籽粒产量增加167. 5 kg/hm~2,玉米籽粒产量增加678. 5kg/hm~2。秸秆还田和平衡施肥是华北潮土有机碳含量提升和土壤碳库保育的重要手段,连续秸秆还田和平衡施肥对保证该区域粮食生产高产稳产有重要作用。  相似文献   
7.
8.
【目的】比较七舍古茶等19份茶树资源的咖啡碱合成酶活性,为选育低咖啡碱茶树品种奠定基础。【方法】以19份茶树资源的鲜叶为试材,粗提咖啡碱合成酶,体外进行咖啡碱合成的酶促反应并用高效液相检测各反应体系的咖啡碱含量,比较不同茶树嫩叶的咖啡碱合成酶的活性。【结果】七舍古茶的咖啡碱合成酶活性最高,为0.386 U/mL;其次是保靖黄金茶、黄金叶,分别为0.661和0.090 U/mL;盘县古茶的咖啡碱合成酶活性最低,为0.038 U/mL;龙井长叶等其余15份茶树资源的咖啡碱合成酶活性差异不大,在0.043~0.07 U/mL。【结论】盘县古茶树可以作为低咖啡碱品种选育的基础材料。  相似文献   
9.
苏干湖(包括大、小苏干湖)是祁连山西段山间内陆河流域尾闾湖泊,所在流域仅有少量牧业活动。研究湿地和冰川对气候变化的响应,可为未来水资源保护和利用决策提供支撑。以苏干湖流域气象数据、遥感影像、冰川编目数据、水文监测数据等为基础,识别流域气候变化拐点,分析冰川变化规律、河湖湿地的演变以及冰川和湿地对气候变化的响应。结果表明:1)1956年以来,苏干湖流域年均温呈上升趋势,年降水量先减少后增加,流域气候经历了冷湿-暖干-暖湿等一系列变化。2)冰川的数量、面积和储量都在持续减少,冰川消融加剧。其中≤0.1km2的小冰川数量和面积呈增加趋势,冰川规模越小则越易发生消融。3)1995-2020年地表河流总流程由302.16km延长到325.29km,增长了23.14km;主干河流大哈尔腾河的径流量、径流深都在增加。4)湖泊的面积和水位同步变化,其中大苏干湖面积和水位都有所上升,小苏干湖面积和水位则基本不变。  相似文献   
10.
双季稻最佳磷肥和钾肥用量与密度组合研究   总被引:9,自引:5,他引:4  
【目的】为明确磷肥、钾肥用量和移栽密度对双季稻的施用效果,在田间试验条件下研究了不同磷肥用量、钾肥用量和移栽密度组合对江西双季稻产量、产量构成要素及磷肥和钾肥利用率的影响。【方法】本研究采用裂区试验设计研究了不同施磷量和移栽密度、不同施钾量和移栽密度对双季稻产量、磷肥和钾肥利用率的影响。磷肥用量和移栽密度试验中,设4个施磷水平(P2O5 0、60、90、120 kg/hm2,以P0、P60、P90和P120表示)和4种移栽密度(21×104、27×104、33×104、39×104 穴/hm2,以D21、D27、D33和D39表示)组合。钾肥用量和移栽密度试验中,设4个施钾水平(K2O 0、90、120、150 kg/hm2,以K0、K90、K120和K150表示),密度设置同磷肥试验。在水稻成熟期对产量以及产量构成要素进行测定,并分析其磷素和钾素的吸收量和利用率等指标。【结果】磷肥与密度试验中,同一施磷水平下,早稻产量和地上部磷素吸收量随着移栽密度的增加而增加,当施磷量超过60 kg/hm2时,产量和磷素吸收量不再随密度增加而显著增加,磷素吸收利用率(REP)、磷素农学效率(AEP)和磷素偏生产力(PFPP)逐步降低,以P60D39处理组合的产量和磷素吸收利用率最高,分别为5303.9 kg/hm2和24.4%,AEP为29.4 kg/kg; 晚稻则以施磷量在60 kg/hm2和33×104 穴/hm2密度组合的产量和磷素吸收利用率最高,分别为7246.9 kg/hm2和42.4%,AEP为36.2 kg/kg。钾肥与密度试验中,早稻的钾素吸收量随着施钾量的增加而增加,施钾量在120 kg/hm2和39×104 穴/hm2密度组合的处理产量和钾素吸收利用率(REK)最高,分别为6376.3 kg/hm2和67.2%,此时钾素农学效率(AEK)为15.6 kg/kg; 晚稻则以施钾量在90 kg/hm2和33×104 穴/hm2密度组合的处理产量和REK最佳,分别为7025.6 kg/hm2和74.0%,AEK为21.7 kg/kg。【结论】合理的磷肥、钾肥用量和移栽密度可以显著增加水稻单位面积有效穗数和养分累积量,进而增加水稻产量和肥料利用率,但过高的磷肥和钾肥施用会抑制产量的进一步增加。建议本研究区域的早稻采用施磷量在60 kg/hm2、施钾量120 kg/hm2和39×104穴/hm2的密度组合,而晚稻采用施磷量60 kg/hm2、施钾量90 kg/hm2和33×104 穴/hm2的密度组合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号