首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
林业   1篇
农学   1篇
  7篇
农作物   1篇
水产渔业   2篇
畜牧兽医   2篇
  2018年   1篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
Determination of the gas diffusion coefficient D s of peat soils is essential to understand the mechanisms of soil gas transport in peatlands, which have been one of major potential sources of gaseous carbons. In the present study, we aimed at determining the D s of peat soils for various values of the air-filled porosity a and we tested the validity of the Three-Porosity Model (Moldrup et al. 2004) and the Millington-Quirk model (1961) for predicting the relative gas diffusivity, the ratio of D s to D 0, the gas diffusion coefficient in free air. Undisturbed peat soil cores were sampled from aerobic layers in the Bibai mire, Hokkaido, Japan. The MQ model reproduced the measured D s/ D 0 curves better than the TPM. The TPM, a predictive model for undisturbed mineral soils, overestimated the D s/ D 0 values for peat soils, implying that in the peat soils the pore pathways were more tortuous than those in the mineral soils. Since the changes in the D s/ D 0 ratios with the a values of a well-decomposed black peat soil tended to be more remarkable than those of other high-moor peat soils, the existence of a positive feedback mechanism was assumed, such that peat soil decomposition itself would increase the soil gas diffusivity and promote soil respiration.  相似文献   
4.
To examine how the number of rock blocks affects the rock-mass runout distance, large-scale outdoor rockfall experiments were physically performed using cubiform granite rock blocks on a slope prepared with granite slabs under both dry and water-saturated conditions. To learn more about the runout mechanism, numerical simulations were also conducted using three-dimensional DEM to reproduce the physical experiments under dry conditions. Longitudinal rock-mass runout distance between the gravity centre in the initial rock block assembly before failure and the apparent gravity centre at final deposition was 10 % larger for experiments under water-saturated conditions than those under dry conditions, with identical numbers of rock blocks in the physical experiments. The physical and numerical experiments revealed that rock blocks at the front and top surfaces had a longer runout distance than those at the rear and bottom surfaces. A rock block scarcely surpassed the rock blocks in front longitudinally and the rock blocks next to it laterally. The equivalent coefficient of friction between gravity centres was positively correlated with the number of rock blocks, which contradicts the findings of a negative correlation between the volume of sturzstroms (rockfall avalanches) and the equivalent coefficient of friction in classic studies on the long runout mechanisms. Our results were likely attributable to the fact that more kinetic energy was dissipated due to repeated inelastic intercollisions with other surrounding rock blocks and granite slabs when the initial rock-mass volume (number of rock blocks) was larger.  相似文献   
5.
Soil moisture condition is essential to regulate the release of soil carbon from a drained peatland since aerobic microbial activities can be encouraged through oxygen supply associated with dewatering the soil layer while they may be discouraged under too dry conditions. Aiming to characterize the soil moisture condition in a reclaimed tropical peatland, we monitored the volumetric water content at 5?cm depth (θ 5?cm), groundwater level (GWL) and rainfall for 20 months from March 2010 to November 2011 in an oil palm field in Nakhon-Si-Thammarat, Thailand. We also measured the soil water retention curve and the unsaturated hydraulic conductivity (k) for a series of matric potential (h) to simulate the moisture condition monitored in the field by using the Buckingham-Darcy's flux law. During the dry season in 2010, the θ 5?cm consistently stayed lower than 0.35?m3?m–3 with the GWL lower than a depth of 30?cm. In the transition from the dry season to the rainy season in 2010, the GWL rose to the land surface with peaks and dips across the time for about one month with the θ 5?cm increasing toward saturation. During the rainy season where the GWL stayed near or above the land surface, the θ 5?cm remained the field-saturated value of 0.58?m3?m–3 on average, less than the laboratory-saturated value of 0.63?m3?m–3, suggesting the development of a significant amount of entrapped air-phase. Hysteretic behavior in the measured θ 5?cm–GWL relation also supported that the top soil layer refuses to absorb water in wetting processes. The simulated θ 5?cm based on the measured k(h) and soil water retention curves demonstrated that the ease with which the top soil dries during a dry season was due mainly to the low k(h) value in the dried condition, while the slope of the θ(h) curve was so moderate that the soil layer could retain moisture for maintaining liquid water supply to the surface from the dropped GWL. Sensitivity analyses while varying the magnitude of both k(h) and evaporation rate (E) suggested that the k(h) function was more deterministic than the value of E in making the land surface easily dried. As the GWL stayed lower than 30?cm in depth for a total of 187 days out of the year monitored, while surface-ponding conditions took place for 120 days of the year, it was concluded that either the extremely dried condition or the saturated-moisture condition had dominantly occurred in the study site through a year and, thus, there may only be a limited time when soil organic matter near the land surface is in favorable moisture conditions for aerobic decomposition.  相似文献   
6.
Soil water storage in grassland is critical to regulate herbage yield while it may be threatened by continuous land use without plowing because of the progress of soil compaction associated with worsening soil hydraulic properties. This study aimed at contrasting the quantity and the availability of soil water in a meadow which had not been renovated for 13 years. We monitored matric potentials and mass soil water contents to 100 cm depth from autumn to winter in which plant transpiration was dormant. Soil water capacities were determined with soil water characteristics. The measurements were made in both a harvesting area in which agricultural vehicles had been operated, and a tree cover area which had experienced almost no vehicle loads. The soil layer in the tree cover area had a larger capacity for readily available moisture than that in the harvesting area. The matric potentials in the tree cover area varied in time between 0 and -1000 cm regardless of depth while those in the harvesting area were rather steady. These suggested better pore water continuity in the tree cover area. In the subsoil layers in both the harvesting and the tree cover areas, the soil water contents in terms of actually stored water did not reach as high a level as those expected from the soil moisture characteristics of the matric potential of -1000 cm. On the other hand, the measured matric potentials were consistently readily available for plants during the entire period of measurement. The apparent discrepancy between the matric potentials in readily available vs. actually stored water implied that the subsoil layers had become drier than observed during the study period, and that soil water hysteresis had prevented the full recovery of the water storage.  相似文献   
7.
The feeding events of wild animals have been widely researched in recent decades. The use of invasive methods to determine stomach contents in which the fish is killed can, however, be considered to be unjustifiable in the case of an endangered fish, such as the Japanese late. Here, we report on a method that can be used to verify feeding events of a fish species without the need for killing the fish through the use of a high-speed video camera and a three-axis micro-acceleration data-logger. High-quality images obtained by the video showed that the fish opens its mouth with a quick downward movement of the mandibles and ingests prey via suction feeding. The movement of the mandibles was also simultaneously recorded by changes in the three-axis accelerations obtained by the logger attached to the dorsum. We attached the logger with an automatic release system to the dorsum of one captive Japanese lates and two wild fish together with an acoustic transmitter and then released the fish in the Shimanto River in Japan. After retrieving the logger, the movement records of the fish obtained by the three-axis accelerometer showed the same pattern of feeding events as those in captivity. A total of 13 feeding events at night and five during the daytime were obtained for the three fish during a total 129.7 h of recording.  相似文献   
8.
9.
To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml?1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.  相似文献   
10.
Saponins are sterols or triterpene glycosides that are widely distributed in plants. The biosynthesis of soybean saponins is thought to involve many kinds of glycosyltransferases, which is reflected in their structural diversity. Here, we performed linkage analyses of the Sg-3 and Sg-4 loci, which may control the sugar chain composition at the C-3 sugar moieties of the soybean saponin aglycones soyasapogenols A and B. The Sg-3 locus, which controls the production of group A saponin Af, was mapped to chromosome (Chr-) 10. The Sg-4 locus, which controls the production of DDMP saponin βa, was mapped to Chr-1. To elucidate the preference of sugar chain formation at the C-3 and C-22 positions, we analyzed the F2 population derived from a cross between a mutant variety, Kinusayaka (sg-10), for the sugar chain structure at C-22 position, and Mikuriya-ao (sg-3), with respect to the segregation of the composition of the group A saponins, and found that the formation of these sugar chains was independently regulated. Furthermore, a novel saponin, predicted to be A0-γg, 3-O-[β-d-galactopyranosyl (1→2)-β-d-glucuronopyranosyl]-22-O-α-l-arabinopyranosyl-soyasapogenol A, appeared in the hypocotyl of F2 individuals with genotype sg-10/sg-10 sg-3/sg-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号