首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  国内免费   1篇
  1篇
综合类   8篇
水产渔业   27篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2006年   3篇
排序方式: 共有36条查询结果,搜索用时 61 毫秒
1.
在水产养殖中,大量使用抗生素会改变水域中的菌落结构,并会诱导产生抗生素抗性菌,对养殖生物及人类健康构成潜在威胁。为初步掌握当前我国沿海养殖密集水域抗性菌的多样性概况,对我国沿海11个典型养殖区的底泥进行采样,选用常见的6种抗生素对菌株进行筛选,并基于Illumina MiSeq测序平台对抗性菌进行多样性分析。结果显示:1)不同养殖水域,其底泥中抗性菌的多样性存在一定的差异; 2)在大部分养殖水域,抗性菌属于变形菌门和厚壁菌门; 3)养殖水域底泥中细菌的多样性在不同抗生素的作用下差异显著。研究结果表明,海水养殖中使用抗生素对抗性菌多样性影响显著。研究结果有助于全面了解水产养殖活动对我国沿海典型养殖区抗性细菌多样性的影响,并可为抗生素使用的生态风险评估和应对策略提供参考。  相似文献   
2.
文章对典型的亚热带养殖海湾——深澳湾海水中无机氮(DIN)、磷酸盐(PO_4-P)浓度的时空变化特征进行了分析,研究了鱼类网箱和贝藻筏式等规模化养殖活动对营养盐时空分布特征的影响,并对营养盐的潜在限制性进行了探讨。结果显示,深澳湾DIN和PO_4-P浓度及分布呈明显的季节变化:DIN在秋季最高,夏季最低;PO_4-P在冬季最高,夏季最低。春季网箱区的DIN浓度和氮磷比(N/P)低于贝藻养殖区和对照区,而其他3个季节,网箱区的DIN和PO_4-P浓度以及N/P均高于贝藻养殖区和对照区。贝藻养殖区和对照区之间在各个季节,氮、磷营养盐和N/P之间均无显著差异。各个季节DIN和PO_4-P浓度均高于理论上浮游植物生长的营养盐阈值,不存在营养盐的绝对限制。夏、冬季的N/P分别为13.6、13.1,低于Redfield值,说明存在N的潜在限制;春、秋季的N/P分别为16.6、19.0,说明P的潜在限制性较强。深澳湾的年均N/P为14.3,全湾受N潜在限制性较强。除夏季外,硝酸盐(NO_3-N)是DIN的主要组成,比例介于51.7%~92.7%,其次为NH_4-N (5.2%~43.8%),亚硝酸盐(NO_2-N)比例最低(2.1%~27.2%),说明深澳湾的氮营养盐达到了热力学平衡状态。与2001年相比,深澳湾海区的DIN和PO_4-P浓度均有下降,由中度营养型转变成贫营养型,年平均N/P更接近Redfield值,说明深澳湾的生产力水平依然受氮限制,营养盐的时空分布特征一定程度上体现了规模化贝藻养殖的影响。  相似文献   
3.
广东省海水养殖贝藻类碳汇潜力评估   总被引:8,自引:0,他引:8  
大型藻类和滤食性贝类可以直接或者间接吸收水体中的碳(C),收获养殖产品形成了一个"可移出的碳汇",提高了海域的碳汇潜力。文章从物质量评估和价值量评估两方面对广东省贝、藻养殖的碳汇贡献进行了定量评估。物质量评估结果显示,2009年广东省海水养殖的贝类和藻类收获可以从海水中移出C约11×104t,相当于39.6×104t二氧化碳(CO2);价值量评估结果显示封存固定这些CO2所需要的费用约0.59×108~2.38×108美元。因此,基于贝、藻养殖的碳汇渔业具有巨大的经济效益、生态效益和社会效益。  相似文献   
4.
在室内条件下进行了玉足海参与凡纳滨对虾的混养实验,分析了单养与混养两种条件下养殖水体营养盐结构以及底质成分的变化,测定了对虾与海参的存活率与生长性能。结果显示,混养海参可以明显改变养殖系统的营养盐结构,可使水体中的磷酸盐和硝酸盐浓度有所升高,同时也可有效地控制系统中氨氮浓度。混养海参也可以大幅度地降低沉积物中有机质和硫化物含量,实验结束时混养组硫化物含量为(7.71±1.33)mg/kg,仅相当于单养组浓度的1/3。混养海参对对虾生长及存活具有明显的促进作用,其中混养组对虾体长特异增长率为(0.69±0.13)%/d,显著优于单养组(0.45±0.06)%/d;混养组对虾成活率可达72.5%±22.9%,显著高于对照组55.0%±17.5%。在混养系统内,对虾不会对海参的生存造成负面影响,海参能够有效地选择摄食和利用沉积物中的营养物质(对食物中有机质的同化率可达36.36%±13.79%),并以较快的速度生长。结果表明,在对虾养殖系统中混养玉足海参具有明显的环境与经济效益。本研究可为我国海水养殖业的可持续发展提供一定的科学依据。  相似文献   
5.
三、成鱼养殖成活率低的主要原因和对策 1.溶解氧的管理 鲥鱼的鳃较小,要通过不停地游动,增加鳃部的通水量,从而满足对溶氧的需求。许多单位采用水车式增氧机,不仅可以增氧,而且加大了水流,鲥鱼的游动速度明显下降。这一措施降低了鲥鱼的运动量,节约了生物能,促进了生长。在生产管理上,溶氧最好保持在5毫克/升以上。在高温期问或阴雨天时,溶解氧不可低于6毫克/升。在溶解氧较低的情况下,剧烈摄食造成因鱼池局部缺氧窒息死亡的事故时有发生。另外,鲥鱼在缺氧的情况下无浮头现象,也无其他症状,因而,日常溶氧的测定对预防缺氧事故的发生十分重要。  相似文献   
6.
氮营养对两种红树植物根际去除柴油污染的影响   总被引:2,自引:1,他引:1  
采用温室沙培试验4个月,研究了在不同氮营养水平下红树植物秋茄(Kandelia candle)和桐花树(Aegiceras corniculatum)对柴油污染的修复作用,并探讨了氮营养对秋茄和桐花树在柴油污染暴露情况下的生长影响,以及对柴油污染去除效果的影响.结果表明,柴油污染对红树植物秋茄和桐花树的生长具抑制作用,柴油浓度越高抑制越明显,且对根部的抑制作用比对地上部显著,增加氮营养水平可以促进红树植物对高浓度柴油污染的耐受性.在各种污染水平下,柴油中总石油烃在秋茄和桐花树的非根际区去除率为72%~80%,在根际区则高达90%以上.相同污染水平下,增加氮营养水平可有效促进秋茄和桐花树根际对柴油的生物去除效率.  相似文献   
7.
8.
2007年6~9月,利用悬挂不同网目的试网方法,对夏季青岛流清河湾栉孔扇贝筏式养殖区附着生物的种类、数量及其垂直分布特征进行了研究。结果显示,流清河湾附着生物群落的优势种在6月份为麦秆虫和钩虾,7月份以后贻贝成为优势种。附着生物湿重随挂网时间延长而增加,8月份增长最快,特定增长率最高可达8.77%/d,主要是由于优势种贻贝的快速生长。玻璃海鞘等海鞘类在流清河湾较少出现。附着生物的数量受网目和水深的影响,总体上随水深的增加而下降,较小网目上附着生物量较大。贻贝为群落优势种是流清河湾夏季附着生物数量较高的主要原因。  相似文献   
9.
为了探讨硝氮(NO_3~--N)、氨氮(NH_4~+-N)和尿素氮(Urea)3种氮(N)源对半叶马尾藻(Sargassum hemiphyllum)幼苗生理特性的影响,在实验室条件下,把幼苗分别置于不同N源浓度中培养24 d,而后测定藻体的生长和生化组成含量。结果显示,不同N源和N浓度对幼苗的生长和部分生化组成有显著影响。3种N源加富均能促进幼苗的生长和组织N的增加,相对生长速率随着N浓度的升高而增加,在浓度为25~150μmol/L组中,幼苗的组织N增加量接近或超过每天以最大速率生长的N需求(0.032%/d);在浓度为50μmol/L时,相对生长速率达到最大值,Urea组的最大相对生长速率显著低于NO_3~--N和NH_4~+-N组;在浓度为10、25μmol/L时,NH_4~+-N组幼苗的相对生长率显著高于相同浓度下的NO_3~--N组,而在浓度为50~150μmol/L时则相反。除了最高浓度组(150μmol/L),随着N浓度的升高,幼苗光合色素、可溶性蛋白和组织N含量逐渐增加,而可溶性糖含量逐渐降低;在相同N浓度下,NO_3~--N加富幼苗的可溶性糖、叶绿素a和叶绿素c含量最高,NH_4~+-N加富时,可溶性蛋白和组织N含量最高,而Urea加富下墨角藻黄素含量最高。当NH_4~+-N浓度增加至150μmol/L时,幼苗的生长和可溶性蛋白含量下降幅度最大。研究表明,将培养水体中NO_3~--N加富至50~150μmol/L或NH_4~+-N加富至25~100μmol/L时,可有效促进半叶马尾藻幼苗的生长、光合作用和物质积累,为室内幼苗顺利度夏培育提供保障。  相似文献   
10.
大鹏澳不同区域尿素浓度与浮游植物脲酶活性的研究   总被引:1,自引:0,他引:1  
2014年8月对大鹏澳的核电温排区、人工鱼礁区和水产养殖区,以及连接大鹏澳的南涌河口、龙岐河口和王母河口等6个区域的尿素浓度(以氮浓度表示,Urea-N)和浮游植物脲酶活性开展调查研究,结合其他环境因子,对比分析不同区域的尿素分布特征及其与脲酶活性的相关性。结果表明,夏季大鹏澳湾内和河口Urea-N浓度相差较大,范围分别为0.28~1.21μmol·L-1和0.38~3.50μmol·L-1,相当于溶解无机氮(DIN)的6.30%~24.31%和3.13%~6.77%,氮源以DIN为主。龙岐河口和王母河口的尿素浓度最高,养殖区次之。湾内和河口的脲酶活性(以NH+4-N表示)范围分别为0.61~1.03μmol·(L·h)-1和0.82~1.07μmol·(L·h)-1,其活性除了与尿素浓度呈正相关外,还受无机营养盐和浮游植物量的影响。在氮、磷没有限制的鱼礁区、养殖区和南涌河口,叶绿素a(Chl-a)浓度高可促进脲酶的诱导调节。尿素为养殖区的重要氮源,脲酶活性与Chl-a呈极显著正相关。温排区、龙岐河口和王母河口存在磷限制,抑制脲酶的诱导调节。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号