首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   15篇
  国内免费   4篇
林业   61篇
农学   29篇
基础科学   3篇
  76篇
综合类   14篇
农作物   39篇
水产渔业   26篇
畜牧兽医   72篇
园艺   6篇
植物保护   22篇
  2022年   12篇
  2021年   7篇
  2020年   16篇
  2019年   12篇
  2018年   21篇
  2017年   7篇
  2016年   14篇
  2015年   11篇
  2014年   20篇
  2013年   28篇
  2012年   23篇
  2011年   20篇
  2010年   14篇
  2009年   17篇
  2008年   16篇
  2007年   18篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1969年   2篇
排序方式: 共有348条查询结果,搜索用时 18 毫秒
1.
Purpose

Humic substances, which are integral components of total organic carbon (TOC), influence soil quality. The study aimed to investigate whether humic and non-humic fractions exhibit early, consistent, and measurable changes and affect TOC sensitivity and storage in a tropical sandy loam soils amended with corn cob biochar.

Materials and methods

There were four treatments with four replicates established in a randomized complete block design. Composite soil samples were taken from plots without biochar (CT), from plots incorporated with 15 t biochar ha?1 (BC-15), and 30 t biochar ha?1 without or with phosphate fertilizer (BC-30 and BC-30+P). The TOC, and humin, humic acid (HA), and fulvic acid (HA) fractions of soil organic carbon were determined for each treatment. The optical densities (400–700 nm) were measured on the soil-free extracts by spectrophotometry; the densities measured at 465 and 665 nm were used to calculate the E465/E665 ratios.

Results and discussion

The BC-30 and BC-30+P plots recorded the highest TOC, humin, humic acid (HA), and fulvic acid (FA) contents with respect to the lowest in the CT. The total exchangeable carbon stratification was significantly higher in all the biochar-treated plots relative to the CT. Spectral analysis showed higher values of E465/E665 (5.02 and 5.15) in the CT and BC-15-treated soils, respectively, compared with the BC-30 and BC-30+P-amended soils with E465/E665 ratios of 2.76 and 2.98, respectively.

Conclusions

Corn cob biochar applied to a tropical sandy loam:

? increased the concentrations of HA and FA and led to increased stratification of TOC, with a stronger effect on HA compared with FA;

? significantly lowered E465/E665 at the high biochar application rate of 30 t ha?1, implying the dominance of high molecular weight humic acid-like substances, and increased degree of aromaticity of the TOC.

  相似文献   
2.
Limited information is available on the grazing management principles of forage rape (Brassica napus L.), particularly in relation to grazing height and intensity and the impact of these on dry-matter (DM) yield and nutritive value. A glasshouse study was undertaken to investigate the effect of three defoliation heights (plant height at harvest; DH: 40, 70 and 90 cm; L, M and H DH respectively) and three defoliation intensities (height at which plants were cut; DI: 5, 20 and 35 cm of residual height; H, M and L DI respectively) on forage rape (cv Goliath) yield and nutritive value at two harvests (harvest 1, H1 and harvest 2, H2), and the impact of nitrogen (N) and water soluble carbohydrate (WSC) reserves on regrowth. Increasing DH from L to H increased estimated total DM yield (H1 plus H2) from 0.5 to 4.6 t DM/ha but DI did not affect yield. Dry-matter yield was optimized at 90 cm DH, but greater nutritive value was achieved by harvesting at lower levels of DH. Despite high in vitro DM digestibility (IVDMD; 852–889 g/kg), harvesting at 90 cm DH could not meet the protein requirement of lactating dairy cows and harvesting at lower levels risks nitrate poisoning. Our results indicate the optimum DH may be between 70 and 90 cm DH, and 20 and 35 cm DI, which requires further studies.  相似文献   
3.
4.
Strawberries (Fragaria × ananassa Duch.) were coated either with chitosan (1, 1.5, and 2% solution, w/v) or aloe vera (AV) gel and the coatings were air dried. Coated strawberries were put in a polypropylene box and stored in refrigerator (6 ± 1°C and 50 ± 5% relative humidity. The success of coating in retaining the postharvest quality of the strawberries was evaluated by determining respiration rate, firmness, weight loss, external colour change, ascorbic acid content, total soluble solids, acidity, pH, microbial decay and sensory quality. The incidence of microbial rot started on day-6 in uncoated and 1% chitosan coated strawberries. Strawberries coated with 1.5 and 2% chitosan were affected by microbial decay on day-9 of storage. On the other hand, rot incidence was initiated in AV gel coated strawberries on day-15 of storage. Aloe vera gel or chitosan coating reduced respiration rate, weight loss, and microbial decay and preserved firmness, ascorbic acid content, and other quality parameters, thus delaying ripening and the progress of fruit decay due to senescence or microbial attack. Furthermore, AV gel delayed the changes in external colour and retained all other postharvest quality of strawberries compared to chitosan coated or uncoated ones throughout the storage.  相似文献   
5.
Paddy and Water Environment - Repairs of concrete irrigation channels in Japan are guided to a large extent by the degree to which their walls have degraded over decades of use. Current methods of...  相似文献   
6.
The structural diversity of different tree-crop associations were studied at Gachabari Sal forest area of Madhupur Garh on Buffer and Peripheral Zone during 2006. The total density, basal area of trees in the Buffer and Peripheral Zone were 155.5 trees·hm^-2, 795.4 trees·hm^-2 and 3.9 m^2·hm^-2, 5.8 m^2·hm^-2, respectively. No regeneration and natural trees were found in Peripheral Zone and the Zone is totally occupied by exotic species where the Buffer Zone comprised of both natural and exotic trees. The Peripheral Zone belonged to younger and smaller trees whereas the Buffer Zone belonged to mixture of smaller, taller, younger and mature trees simultaneously. For the practicing of different agroforestry systems both Zones have lost their original characters of Sal forest.  相似文献   
7.
Antimicrobial and cytotoxic constituents from the seeds of Annona squamosa   总被引:1,自引:0,他引:1  
Annotemoyin-1, Annotemoyin-2, squamocin and cholesteryl glucopyranoside were isolated from the seeds of Annona squamosa. These compounds and plant extracts showed remarkable antimicrobial and cytotoxic activities.  相似文献   
8.
Coastal land use across the globe has experienced remarkable rapid change over the recent decades because of extraordinary anthropogenic pressure and climate variability and change. Therefore, quantitative information about coastal land use change is imperative for effective management and planning resources for sustainable development. We analysed the quantitative land use and land cover changes during 1989–2000–2010 periods in three important agroecological zones of the most vulnerable coastal region of Bangladesh using Landsat images (Thematic Mapper/Enhanced Thematic Mapper Plus). In the Ganges Tidal Floodplain, the area under shrimp cultivation greatly increased at the rate of 2·05% per annum. The majority of the shrimp area gained from conversion of single cropland. In the Meghna Estuarine Floodplain, decreased mudflat and water bodies were observed, which was predominantly converted into cropland. In Chittagong Coastal Plain, salt pan–shrimp area increased with the expense of single and/or double cropland. In all the study areas, settlement area considerably increased over time. The dynamics of land use change have been attributed to low and unstable food production in the coastal region. The approach adopted in study and the results obtained from the study would likely be useful for policy making and identifying direction for future studies on the coastal land use in Bangladesh. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号