首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   7篇
林业   16篇
农学   2篇
  50篇
综合类   13篇
农作物   5篇
水产渔业   6篇
畜牧兽医   84篇
园艺   4篇
植物保护   21篇
  2023年   2篇
  2022年   2篇
  2021年   11篇
  2020年   7篇
  2019年   11篇
  2018年   8篇
  2017年   7篇
  2016年   2篇
  2015年   4篇
  2014年   13篇
  2013年   8篇
  2012年   20篇
  2011年   15篇
  2010年   5篇
  2009年   13篇
  2008年   14篇
  2007年   11篇
  2006年   9篇
  2005年   19篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2000年   2篇
  1998年   1篇
  1991年   1篇
排序方式: 共有201条查询结果,搜索用时 265 毫秒
1.
OBJECTIVE: To investigate whether time-frequency and complexity analyses of heart murmurs can be used to differentiate physiologic murmurs from murmurs caused by aortic stenosis (AS) in Boxers. ANIMALS: 27 Boxers with murmurs. PROCEDURES: Dogs were evaluated via auscultation and echocardiography. Analyses of time-frequency properties (TFPs; ie, maximal murmur frequency and duration of murmur frequency > 200 Hz) and correlation dimension (T(2)) of murmurs were performed on phonocardiographic sound data. Time-frequency property and T(2) analyses of low-intensity murmurs in 16 dogs without AS were performed at 7 weeks and 12 months of age. Additionally, TFP and T(2) analyses were performed on data obtained from 11 adult AS-affected dogs with murmurs. RESULTS: In dogs with low-intensity murmurs, TFP or T(2) values at 7 weeks and 12 months did not differ significantly. For differentiation of physiologic murmurs from murmurs caused by mild AS, duration of murmur frequency > 200 Hz was useful and the combination assessment of duration of frequency > 200 Hz and T(2) of the murmur had a sensitivity of 94% and a specificity of 82%. Maximal murmur frequency did not differentiate dogs with AS from those without AS. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that assessment of the duration of murmur frequency > 200 Hz can be used to distinguish physiologic heart murmurs from murmurs caused by mild AS in Boxers. Combination of this analysis with T(2) analysis may be a useful complementary method for diagnostic assessment of cardiovascular function in dogs.  相似文献   
2.
3.
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are derived from pre-implantation embryos and can be propagated as a homogeneous, uncommitted cell population for an almost unlimited period of time without losing their pluripotency and their stable karyotype. Murine ES cells are able to reintegrate fully into embryogenesis when returned into an early embryo, even after extensive genetic manipulation. In the resulting chimeric offspring produced by blastocyst injection or morula aggregation, ES cell descendants are represented among all cell types, including functional gametes. Therefore, mouse ES cells represent an important tool for genetic engineering, in particular via homologous recombination, to introduce gene knock-outs and other precise genomic modifications into the mouse germ line. Because of these properties ES cell technology is of high interest for other model organisms and for livestock species like cattle and pigs. However, in spite of tremendous research activities, no proven ES cells colonizing the germ line have yet been established for vertebrate species other than the mouse (Evans and Kaufman, 1981; Martin, 1981) and chicken (Pain et al., 1996). The in vitro differentiation capacity of ES cells provides unique opportunities for experimental analysis of gene regulation and function during cell commitment and differentiation in early embryogenesis. Recently, pluripotent stem cells were established from human embryos (Thomson et al., 1998) and early fetuses (Shamblott et al., 1998), opening new scenarios both for research in human developmental biology and for medical applications, i.e. cell replacement strategies. At about the same time, research activities focused on characteristics and differentiation potential of somatic stem cells, unravelling an unexpected plasticity of these cell types. Somatic stem cells are found in differentiated tissues and can renew themselves in addition to generating the specialized cell types of the tissue from which they originate. Additional to discoveries of somatic stem cells in tissues that were previously not thought to contain these kinds of cells, they also appear to be capable of developing into cell types of other tissues, but have a reduced differentiation potential as compared to embryo-derived stem cells. Therefore, somatic stem cells are referred to as multipotent rather than pluripotent. This review summarizes characteristics of pluripotent stem cells in the mouse and in selected livestock species, explains their use for genetic engineering and basic research on embryonic development, and evaluates their potential for cell therapy as compared to somatic stem cells.  相似文献   
4.
With an increasing demand of sustainable raw materials for bioenergy use, coppicing as management approach to increase the biomass production of forests is becoming of greater importance. This study describes the parameterization of biomass equations for six tree species traditionally used in coppices forests, namely sycamore maple (Acer pseudoplatanus L.), field maple (Acer campestre L.), European ash (Fraxinus excelsior L.), European hornbeam (Carpinus betulus L.), downy birch (Betula pubescens Ehrh.), and common hazel (Corylus avellana L.) growing in coppice-with-standard systems in Lower Saxony, Germany. The parameterization was based on measurements of over 950 trees sampled from two forest sites. The sampled trees were felled and separated into three biomass compartments (stem, coarse branches, and fine brushwood) and weighed on site. The dry weight of sub samples from each compartment was measured. Equations were derived for total aboveground biomass, stem biomass, and crown biomass using regression analyses. We either used diameter at breast height as single independent explanatory variable or in combination with tree height. Biomass production of stump sprouts and generatively grown stems was compared for ash and sycamore maple. In the same age classes, it was found that ash stump sprouts had a slightly higher production than seed-grown stems. For sycamore maple, no difference was detected.  相似文献   
5.
In this paper the determination of the physical/rheological characteristics is described for a series of commercial galactomannans of which the structural details have been reported previously. Both solubility of the galactomannans and rheological properties of galactomannan solutions and galactomannan/xanthan mixtures were determined. Using a statistical analysis approach an attempt was undertaken to recognize correlations between structural and rheological data. The best correlation found was between the abundance of galactose substituents at a regular distance (type of galactomannan) and the storage modulus (G') of mixed galactomannan/xanthan gels, underscoring the hypothesis that branching hinders the formation of a network with xanthan gum. Also, the G' for the group of locust bean gums correlated with the degree of blockiness, that is, the size and occurrence of nonsubstituted regions on the mannose backbone. In addition, galactomannans displayed an apparent decrease in gelling ability with increasing average molecular weight. That G' also relates to the type of galactomannan can therefore partly be attributed to differences in average molecular weight for the various galactomannan types. However, within the series of locust bean gums tested, also an increase of G' with molecular weight was observed. This can be explained by the decreasing number of loose ends of the polymers and the concomitant increasing efficiency in network participation with increasing molecular weight.  相似文献   
6.
The present study investigates the combined effects of feed-induced increase in polyunsaturated fatty acids (PUFA) content and/or alpha-tocopherol content in pig muscles and preslaughter stress on cell integrity. Cell integrity was determined by plasma lactate dehydrogenase (LDH) activity, and antioxidative status of muscle was measured by activities of the antioxidative enzymes catalase, superoxide dismutase, and glutathione peroxidase. Preslaughter stress increased LDH activity, reflecting loss in cell membrane integrity independent of increased content of PUFA and/or alpha-tocopherol. However, feed-induced increase of PUFA decreased the LDH activity in plasma immediately after slaughter. Catalase activity in the muscle tissue increased as a consequence of the high-PUFA diet, which may indicate an increased demand caused by introduction of oxidative labile PUFA.  相似文献   
7.
Agroforestry systems are potentially suitable for conservation of tree genetic resources. Farmers around Mt. Kenya usually integrate trees into their farm. Large parts of these trees seem to be of exotic origin, whereas indigenous species have priority for conservation. This study aimed at determining on-farm richness, composition and frequency of indigenous and exotic woody species around Mount Kenya to assess the suitability of farms for the conservation of indigenous tree species. 265 on-farm plots of 0.5 ha size each were selected in 18 different agro-ecological zones by using a stratified sampling scheme. All woody species within the plot were recorded with their local and scientific names. Total species richness was 424 (including 306 indigenous ones), mean richness per plot 16.5 species (including 8.8 indigenous ones). Eight out of the 10 most frequent species were exotic ones with Grevillea robusta from Australia ranking first (found on almost 76% of the surveyed farms). The proportion of indigenous species increased with increasing aridity and temperature. Dominance of exotic species was found at farms of humid mid- and highlands. Ordination analysis revealed that mostly exotic species contributed to separation of farms in the highlands and upper midlands, whereas indigenous species in the lower midlands and lowlands. As the frequencies of most indigenous trees were low, only parts of the surveyed farms can contribute to conservation of tree genetic resources, particularly the less intensively managed farms of the more arid lands. Farmers’ access to knowledge on valuable indigenous tree species and to quality seedlings of these trees need to be improved to increase indigenous species’ frequencies on farms and possibly to replace some of the exotic species in the future.  相似文献   
8.
Quality components of sea buckthorn (Hippophae rhamnoides) varieties   总被引:1,自引:0,他引:1  
The sensory quality and chemical constituents of juices from seven sea buckthorn (Hippophaerhamnoides L.) varieties were studied in two consecutive seasons. The juices were generally described as sour and astringent, with low sweetness and fruity flavor. The differences in sensory quality as well as in chemical composition between samples and years were significant (p < 0.05) in most parameters studied. The Chuiskaya variety was described as the sweetest, with the strongest fruity flavor, whereas the varieties Avgustinka, Botanicheskaya, Trofimovskaya, and Raisa were the sourest and most astringent. Total sugar (fructose and glucose) varied from 1.9 to 7.1 g/100 mL in juice, total acid (malic and quinic acids) from 3.1 to 5.1 g/100 mL, vitamin C from 29 to 176 mg/100 mL, and pulp oil from 0.7 to 3.6%. The soluble solids were between 7.4 and 12.6, the pH between 2.7 and 2.9, and the titrable acidity between 2.0 and 3.7. The redness was highest on Avgustinka and Raisa, but there were no differences in yellowness. Total sugar and the sugar/acid ratio correlated positively with sweetness and negatively with sourness and astringency, whereas total acid and titrable acidity correlated positively with sourness and astringency and negatively with sweetness.  相似文献   
9.
A 49-day incubation experiment was carried out with the addition of field-grown maize stem and leaf residues to soil at three different temperatures (5, 15, and 25 °C). The aim was to study the effects of two transgenic Bt-maize varieties in comparison to their two parental non-Bt varieties on the mineralization of the residues, on their incorporation into the microbial biomass and on changes in the microbial community structure. The stem and leaf residues of Novelis-Bt contained 3.9 μg g−1 dry weight of the Bt toxin Cry1Ab and those of Valmont-Bt only 0.8 μg g−1. The residues of the two parental non-Bt varieties Nobilis and Prelude contained higher concentrations of ergosterol (+220%) and glucosamine (+190%) and had a larger fungal C-to-bacterial C ratio (+240%) than the two Bt varieties. After adding the Bt residues, an initial peak in respiration of an extra 700 μg CO2-C g−1 soil or 4% of the added amount was observed in comparison to the two non-Bt varieties at all three temperatures. On average of the four varieties, 19-38% of the maize C added was mineralized during the 49-day incubation at the three different temperatures. The overall mean increase in total maize-derived CO2 evolution corresponded to a Q10 value of 1.4 for both temperature steps, i.e. from 5 to 15 °C and from 15 to 25 °C. The addition of maize residues led to a strong increase in all microbial properties analyzed. The highest contents were always measured at 5 °C and the lowest at 25 °C. The variety-specific contents of microbial biomass C, biomass N, ATP and adenylates increased in the order Novelis-Bt ? Prelude<Valmont-Bt ? Nobilis. The mineralization of Novelis-Bt residues with the highest Bt concentration and lowest N concentration and their incorporation into the microbial biomass was significantly reduced compared to the parental non-Bt variety Nobilis. These negative effects increased considerably from 5 to 25 °C. The transgenic Bt variety Valmont did not show further significant effects except for the initial peak in respiration at any temperature.  相似文献   
10.
To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing in grassland soil with a diverse soil community. The experiment consisted of two treatment factors—defoliation and plant growth phase (PGP)—in a fully factorial design. Defoliation had two categories, i.e. no trimming or trimming a total of four times at 2 week intervals. The PGP treatment had four categories, i.e. 1, 3, 7 or 13 weeks growth following planting before the first defoliation (subsequently referred to as PGP1, PGP2, PGP3 and PGP4, respectively). In each PGP treatment category, microcosms were harvested 1 week after the final defoliation. Harvested shoot and root mass and total shoot production (including trimmed and harvested shoot mass) increased with time and were lower in defoliated than in non-defoliated systems. The fraction of root biomass of harvested plant biomass decreased with time but was increased by defoliation at PGP3 and PGP4. The proportion of T. repens in total shoot production increased and those of P. lanceolata and P. pratense decreased with time. Defoliation increased the proportions of P. lanceolata and P. pratense in total shoot production at PGP3 and PGP4. Root N and C concentrations increased and root C-to-N ratio decreased with time in non-defoliated systems. Defoliation increased root N concentration by 38 and 33% at PGP1 and PGP2, respectively, but decreased the concentration by 22% at PGP4. In contrast, defoliation reduced root C concentration on average by 1.5% at each PGP. As with the effects on root N concentration, defoliation decreased the root C-to-N ratio at PGP1 and PGP2 but increased the ratio at PGP4. Among soil animal trophic groups, the abundance of herbivorous nematodes was higher at PGP4 than at PGP1-3 and that of predacious nematodes higher at PGP2-4 than at PGP1, while the abundance of bacterivorous, fungivorous and omnivorous nematodes and that of detritivorous enchytraeids did not differ between the PGP categories. Among bacterivorous nematodes, however, Acrobeloides, Chiloplacus and Protorhabditis species decreased and that of Plectus spp. increased with time. Defoliation did not affect the abundance of soil animal trophic groups, but reduced the abundance of herbivorous Coslenchus spp. at each PGP and raised the abundance of herbivorous Rotylenchus spp. and bacterivorous Eucephalobus spp. at PGP4. Confirming our hypothesis, the results suggest that the effects of defoliation on the attributes of grassland plants, such as biomass allocation between roots and shoots and root quality, may depend on the timing of defoliation within a growing season. However, contradicting our hypothesis, the results suggest that significant changes in plant attributes after defoliation may not always lead to substantial changes in the abundance of belowground organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号