首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   2篇
  国内免费   7篇
林业   43篇
农学   13篇
基础科学   2篇
  29篇
综合类   21篇
农作物   9篇
水产渔业   6篇
畜牧兽医   18篇
园艺   2篇
植物保护   15篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   13篇
  2017年   6篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   17篇
  2012年   6篇
  2011年   13篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1988年   2篇
  1976年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
1.
2.
鸡马立克氏病二价活疫苗免疫协同作用研究@吴长新@刘秀梵@吴艳涛@张如宽@甘军纪@刘慧谋@彭大新@李胜$江苏农学院动物医学系@李胜$杭州市近江种鸡场鸡;马立克氏病;二价+疫苗;免疫协同作用农业部“七·五”重大攻关项目;江苏省“八·五”重大攻关项目...  相似文献   
3.
4.
指出了地表温度作为地表能量平衡中的异常重要的参数之一,它在地表与大气相互作用过程当中发挥着非常重要的作用,在地表能量平衡的研究也扮演着重要角色,特别在气象、水文、地质、生态等众多领域有着非常广泛的应用需要。对现有的地表温度反演的4种算法进行比较,最终确定选择劈窗算法。根据劈窗算法的需要,对 M ODIS数据波段选取,反演出黄河三角洲地区地表温度,并且利用实测的地表温度进行反演结果精度分析。  相似文献   
5.
采用水蒸气蒸馏法从柠檬叶中提取挥发油中的油相成分,进一步以乙醚为溶剂从蒸馏馏出液中萃取挥发油中的水溶性物质;利用气相色谱-质谱联用(GC-MS)表征了二者的化学成分,根据气相色谱峰面积归一化法进行定量.通过表征和分析比较得到:柠檬叶挥发油油相成分得率为0.33%(以鲜叶计),确定了其中的30种成分,占油相成分总量的96.35%,其主要成分为d-柠檬烯(29.91%),其后依次为β-蒎烯(20.37%)、香茅醛(18.52%)、桧烯(5.74%).柠檬叶水溶性成分得率为0.03%(以鲜叶计),确定了其中的30种成分,占水相成分总量的97.94%,其主要成分为d-柠檬烯(30.33%)、香茅醛(21.88%)、β-蒎烯(19.83%)、桧烯(6.49%).  相似文献   
6.
为了阐明极度退化的崩岗生态系统内芒萁的生长状态和养分储存特征,对闽西南3处不同侵蚀强度的典型崩岗内芒萁叶片C、N、P含量及C/N、C/P、N/P特征进行研究,对比分析不同侵蚀强度下崩壁部位和崩岗不同侵蚀部位中芒萁叶片的生态化学计量特征。结果表明:崩岗内芒萁叶片的C、N、P平均含量分别为477.10 g·kg~(-1)、6.45 g·kg~(-1)、0.25 g·kg~(-1),芒萁叶片的N、P养分含量极低;而C/N、C/P、N/P平均值分别为96.82、2 097.20、27.67,芒萁生长受P限制。不同侵蚀强度下的崩壁内芒萁叶片的C、N、P含量及C/P、N/P均存在显著差异(P0.05),C含量、C/P和N/P均随着侵蚀强度的增强而减小,N含量在中度侵蚀的崩壁内较高,而P含量则随着侵蚀强度的增强而增加,表明芒萁对土壤侵蚀严重的崩岗生态系统具有很强的适应能力。在崩岗的不同侵蚀部位中芒萁叶片的P含量、C/P和N/P均存在显著差异(P0.05),P含量在集水坡面最高,在崩壁最低;而C/P、N/P均表现为崩壁显著大于其他各侵蚀部位。可见,在崩岗的不同侵蚀部位,崩壁中芒萁对C的同化能力强于其他侵蚀部位,且对P利用效率也显著高于其他侵蚀部位。综上,在侵蚀严重的崩岗生态系统中,芒萁有较强的同化C能力和较高的对P利用效率,能通过调节自身C、N、P元素含量很好地适应土壤侵蚀严重、养分极度贫瘠的生境。  相似文献   
7.
For examining the probability of increase in the occupation ratio of inoculated rhizobium in nodules, various Rj-soybean cultivars including the Rj 2 Rj 3 Rj 4-lines of soybean were grown in a field of the Kyushu University Farm. Bradyrhizobium japonicum USDA110 that carries uptake hydrogenase (Hup+) was used as an inoculum. The relative efficiency of nitrogen fixation generally increased by the inoculation. However, there were no significant differences in the effects among the genotypes of the host plants. The occupation ratio of serogroup USDA110 in the nodules on the taproot of the inoculated plants was in the range of 77–100%, suggesting that the B. japonicum strain USDA110 infected taproots immediately after inoculation. The occupation ratios in the nodules on the lateral roots were 53–67, 40–86, 63–83, and 62–77% in inoculated plants of the non-Rj-, Rj 2 Rj 3-, Rj 4-, and Rj 2 Rj 3 Rj 4-genotypes, respectively, and they decreased in all the genotypes with the progression of growth. At the time of the first sampling, the occupation ratios on the lateral roots of these Rj 2 Rj 3 Rj 4-genotypes showed values intermediate between those of IAC-2 (Rj 2 Rj 3) and Hill (Rj 4) , which were the parent cultivars of the Rj 2 Rj 3 Rj 4-lines, B340, B349, and C242. The reduction in the occupation ratio of the serogroup USDA110 for about 1 month after the first sampling was the lowest (0.13–0.16) in the Rj 2 Rj 3 Rj 4-genotypes, excluding B349, followed by the non-Rj- and Rj 2 Rj 3-genotypes and highest (0.52–0.69) in the Rj 4-genotypes, excluding Hill. Therefore, it was considered that the population of compatible rhizobia with host soybean plants increased in the rhizosphere with the progression of the development and growth. The results showed that with the expansion of the root area of host plants, the occupation ratio of type A rhizobia including the serogroup USDA110 was high. Therefore, the Rj 2 Rj 3 Rj 4-genotypes were superior to other Rj-genotypes in terms of the inoculation effects of nodulation type A rhizobium, B. japonicum USDA110. However, the preference of the Rj 2 Rj 3 Rj 4-genotype for serogroup USDA110 is not sufficient to rule out the competition with the other serogroups in this study. Therefore, the study should be centered on the isolation of more efficient (Hup+) and highly compatible rhizobial strains with the Rj 2 Rj 3 Rj 4- genotypes.  相似文献   
8.
用鼠伤寒沙门氏菌的热灭活全菌和热酚—水抽提脂多糖抗原免疫BALB/c小鼠,取脾脏淋巴细胞与SP_2/O细胞融合,获得稳定分泌抗沙门氏菌O_4和O_(12)抗原的特异单克隆抗体的杂交瘤细胞系7个,分别命名为AG24-1、AG90-5、BG1-8、BG17-12、BG66-10、BG78-15、EG19-11。小鼠腹水中的单抗直接凝集滴度为10~2-10~4,间接免疫荧光滴度为10~3-10~6。与沙门氏菌和肠杆菌科中其他细菌的反应性试验表明,BG78-15是O_(12)因子特异单抗,其他6种为对O_4因子的特异单抗。  相似文献   
9.
用热酚—水法提取沙门氏菌脂多糖(LPS),经pH8.0热处理后,致敏醛化的绵羊红血球,建立了一种快速检测抗沙门氏菌O抗原单克隆抗体的微量间接血凝试验。用致敏血球在96孔V型血凝板上与杂交瘤培养上清作凝集试验,数秒钟即能判定结果。本试验具有快速的特点,且有一定的敏感性。  相似文献   
10.
Within-stem variations in the mechanical properties of 17–19-year-old Melia azedarach planted in two sites in northern Vietnam were examined by destructive and nondestructive methods. Wood samples were collected from 10, 50, and 90% of the radial length from pith on both sides (North and South) at 0.3, 1.3, 3.3, 5.3, and 7.3 m heights above the ground. The mean values in whole trees of wood density (WD), modulus of rupture (MOR), modulus of elasticity (MOE), and dynamic modulus of elasticity (Ed) at 12% moisture content were 0.51 g/cm3, 78.58 MPa, 9.26 GPa, and 10.93 GPa, respectively. Within the stem, the radial position was a highly (p?<?0.001) significant source of variation in mechanical properties. MOR, MOE, and Ed increased from pith to bark. WD had a strong positive linear relationship with both MOR (r?=?0.85, p?<?0.001) and MOE (r?=?0.73, p?<?0.001). This suggests that it is potentially possible to improve mechanical properties through controlling WD. MOR had also a strong linear relationship with Ed (r?=?0.84, p?<?0.001). This indicates that Ed is a good indicator to predicting the strength of wood if the density of measured element is known. Besides, the stress wave method used in this study provides relatively accurate information for determining the stiffness of Melia azedarach planted in northern Vietnam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号