首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
农学   2篇
  24篇
畜牧兽医   3篇
园艺   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2013年   3篇
  2011年   3篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 812 毫秒
1.
Preliminary studies showed that a Bacillus subtilis strain stimulates plant growth. We investigated how inoculating seeds of a sunflower cultivar (Helianthus annuus L.) with this strain stimulated plant growth, soil properties and emissions of greenhouse gasses, i.e. carbon dioxide (CO2) and nitrous oxide (N2O), when cultivated in a greenhouse. Unfertilized sunflowers or fertilized with urea served as controls. After one month, root length and fresh and dry root weight of the sunflower was significantly higher in the bacteria amended plant than in the urea and unfertilized plants. However, at harvest, no positive effect was observed. The number of seeds per plant and seed weight was not significantly different between the treatments, but total plant N was significantly higher in urea-amended plants than in unfertilized plants. The CO2 production rate was not affected by treatment, but the N2O emission rate was significantly higher in soil amended with urea plus bacteria soil compared to the unfertilized treatments. It was found that the B. subtilis strain used in this study had a positive, but only temporarily effect on growth of the sunflower cultivar used.  相似文献   
2.
Biosolids, mainly from textile industries and the rest from households, were vermicomposted with Eisenia fetida, cow manure and oat straw for 2 months at three different moisture contents (60%, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida. The vermicompost with the best stability and maturity and a weight loss of 18% was obtained with 1,800 g biosolid, no straw and 800 g manure at 70% water content. This vermicompost had the following properties: pH 7.9; organic C content of 163 g kg–1; an electrolytic conductivity of 11 mS cm–1; a humic-to-fulvic acid ratio of 0.5 (HA/FA); total N content of 9 g kg–1; water soluble C (Cw) less than 0.5%; cation exchange capacity of 41 cmolc kg–1; a respiration rate of 188 mg CO2-C kg–1 compost-C day–1; a NO3/CO2 ratio greater than 8; and a NH4+/NO3 ratio lower than 0.16. The vermicompost gave a germination index for cress (Lepidium sativum) of 80% after 2 months while the earthworm production increased 1.2-fold and volatile solids decreased five times. In addition, the vermicompost contained less than 3 CFU g–1Salmonella spp., no fecal coliforms and Shigella spp. and no eggs of helminths. Concentration of sodium was 152 mg kg–1 dry compost, while concentrations of chromium, copper, zinc and lead were below the limits established by the USEPA.  相似文献   
3.
4.
The turnover of organic matter determines the availability of plant nutrients in unfertilized soils, and this applies particularly to the alkaline saline soil of the former Lake Texcoco in Mexico. We investigated the effects of alkalinity and salinity on dynamics of organic material and inorganic N added to the soil. Glucose labelled with 14C was added to soil of the former Lake Texcoco drained for different lengths of time, and dynamics of 14C, C and N were investigated with the Detran model. Soil was sampled from an undrained plot and from three drained for 1, 5 and 8 years, amended with 1000 mg 14C‐labelled glucose kg?1 and 200 mg NH4+‐N kg?1, and incubated aerobically. Production of 14CO2 and CO2, dynamics of NH4+, NO2 and NO3, and microbial biomass 14C, C and N were monitored and simulated with the Detran model. A third stable microbial biomass fraction had to be introduced in the model to simulate the dynamics of glucose, because > 90 mg 14C kg?1 soil persisted in the soil microbial biomass after 97 days. The observed priming effect was mostly due to an increased decay of soil organic matter, but an increased turnover of the microbial biomass C contributed somewhat to the phenomenon. The dynamics of NH4+ and NO3 in the NH4+‐amended soil could not be simulated unless an immobilization of NH4+ into the microbial biomass occurred in the first day of the incubation without an immediate incorporation of it into microbial organic material. The dynamics of C and a priming effect could be simulated satisfactorily, but the model had to be adjusted to simulate the dynamics of N when NH4+ was added to alkaline saline soils.  相似文献   
5.
Earthworms burrow through the soil thereby accumulating many lipophilic organic pollutants from the surrounding environment, so they could be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo[a]pyrene (BaP), with or without added Eisenia fetida and biosolid or vermicompost. Concentrations of PAHs were monitored in soil and earthworms for 70 days. Removal of PAHs increased in soil with earthworms added as 91% of Anth, 16% BaP and 99% Phen was dissipated compared to 42%, 3% and 95% in unamended soil. The microorganisms in the gut of the earthworm contributed to PAHs removal and 100% of Phen, 63% of Anth and 58% of BaP was removed from sterilized soil with E. fetida added. Biosolid and to lesser extent vermicompost accelerated removal of PAHs from soil. Applying earthworms to a contaminated site might be an environmentally friendly way to remove hydrocarbons from soil. However, a limitation might be the cost of the large amounts of earthworms required to remove PAHs from soil and the necessity to supply them with sufficient substrate while maintaining the water content of the soil high enough for their normal functioning.  相似文献   
6.
Soil management systems may negatively affect the quality of the soil. Policymakers and farmers need scientific information to make appropriate land management decisions. Conventional (CT) and zero tillage (ZT) are two common soil management systems. Comparative field studies under controlled conditions are required to determine the impact of these systems on soil quality and yields. The research presented studied plant and soil physical and chemical characteristics as affected by different agricultural management practices, i.e. ZT and CT, cropped with continuous wheat or maize in monoculture (M) or in a yearly rotation (R) of these two crops, either with residue retention (+r) or without residues retention (?r), in an experimental field in the Transvolcanic Belt of Mexico after 14 years. The dominant factors defining soil quality were organic C, total N, moisture, aggregate stability, mechanical resistance, pH and EC. The principal component combining the variables organic C, total N, aggregate stability and moisture content showed the highest correlations with final yield (R = 0.85 for wheat and 0.87 for maize).After 14 years of continuous practice, ZTM + r and ZTR + r had the best soil quality and produced the highest wheat and maize yields of average 2001–2004 (6683 and 7672 kg ha?1 and 5085 and 5667 kg ha?1, respectively). Removing the residues, i.e. treatments ZTM ? r with maize (average 2001–2004: 1388 kg ha?1) and ZTR ? r and CTR ? r with wheat (average 2001–2004: 3949 and 5121 kg ha?1), gave the lowest yields and less favourable soil physical and chemical characteristics compared to the other practices. It was found that zero tillage with residue retention is a feasible management technology for farmers producing maize and wheat in the agro-ecological zone studied, resulting in a better soil quality and higher yields than with the conventional farmer practice (maize monoculture, conventional tillage and residue removal).  相似文献   
7.
Arsenic (As), lead (Pb), copper (Cu) and zinc (Zn) can be found in large concentrations in mine spills of central and northern Mexico. Interest in these heavy metals has increased recently as they contaminate drinking water and aquifers in large parts of the world and severely affect human health, but little is known about how they affect biological functioning of soil. Soils were sampled in seven locations along a gradient of heavy metal contamination with distance from a mine in San Luis Potosí (Mexico), active since about 1800 AD. C mineralization and N2O production were monitored in an aerobic incubation experiment. Concentrations of As in the top 0-10 cm soil layer ranged from 8 to 22,992 mg kg−1, from 31 to 1845 mg kg−1 for Pb, from 27 to 1620 mg kg−1 for Cu and from 81 to 4218 mg kg−1 for Zn. There was a significant negative correlation between production rates of CO2 and concentrations of As, Pb, Cu and Zn, and there was a significant positive correlation with pH, water holding capacity (WHC), total N and soil organic C. There was a significant negative correlation (P<0.05) between production rate of nitrous oxide (N2O) attributed to nitrification by the inhibition method in soil incubated at 50% WHC and total concentrations of Pb and Zn, and there was a significant positive correlation (P<0.05) with pH and total N content. There was a significant negative correlation (P<0.05) between the production rate of N2O attributed to denitrification by the inhibition method in soil incubated at 100% WHC and total concentrations of Pb, Cu and Zn, and a significant positive correlation (P<0.01) with pH; there was a significant positive correlation (P<0.05) between the production of N2O attributed to other processes by the inhibition method and WHC, inorganic C and clay content. A negative value for production rate of N2O attributed to nitrifier denitrification by the inhibition method was obtained at 100% WHC. The large concentrations of heavy metals in soil inhibited microbial activity and the production rate of N2O attributed to nitrification by the inhibition method when soil was incubated at 50% WHC and denitrification when soil was incubated at 100% WHC. The inhibitor/suppression technique used appeared to be flawed, as negative values for nitrifier denitrification were obtained and as the production rate of N2O through denitrification increased when soil was incubated with C2H2.  相似文献   
8.
Wastewater sludge can be vermicomposted to increase its nutrient content and reduce pathogens. The effect of vermicompost wastewater sludge on soil characteristics and growth of bean plants (Phaseolus vulgaris L.) was compared with that of inorganic fertilizer, untreated sludge or sludge treated with lime to pH 12. Plants cultivated in vermicompost amended soil developed best while those amended with inorganic fertilizer least. Bean plants grown in the unlimed amended soil had the highest total N content of 3.97 g kg−1, but only 6 active and 8 total nodules. Plants cultivated in unamended soil and added with inorganic fertilizer had >20 active and total nodules, but ≤2.12 g N kg−1 dry plant. It was found that limed and unlimed sludge stimulated development of bean plants to a larger extent than those cultivated in inorganic fertilized soil or unamended soil in the greenhouse, but less than those cultivated in vermicompost amended soil.  相似文献   
9.
Tropical highlands of the world are densely populated and intensively cropped. Agricultural sustainability problems resulting from soil erosion and fertility decline have arisen all over this agro-ecological zone. Based on selected soil quality indicators, i.e. time-to-pond, aggregate distribution and stability (expressed as the mean weight diameter (MWD) for dry and wet sieving, respectively) and soil moisture, from a representative long-term sustainability trial initiated in 1991 in Central Mexico (2240 masl; 19.31°N, 98.50°W; Cumulic Phaeozem), some insights into the feasibility of conservation agriculture (CA) as part of a sustainable production system in the tropical highlands are given. Zero tillage plots with crop residue removal showed low aggregate distribution (average MWD = 1.34 mm) and stability (average MWD = 0.99 mm) resulting in top layer slaking, increased erosion and low time-to-pond values. Retaining the residue in the field with zero tillage avoided the above-mentioned negative evolution for both aggregate distribution as stability (average MWD = 2.77 and 1.51 mm, respectively) and even improved the physical conditions of the soil as compared to conventional practice. Throughout the growing season the lowest soil moisture content was found in zero tillage without residue (average over the entire growing season = 20.5% volumetric moisture content), the highest in zero tillage with residue retention (average = 29.7%) while conventional tillage had intermediate soil moisture values (average = 27.4%). Zero tillage without residue retention had most days of soil moisture values under permanent wilting point, while zero tillage with residue retention had the least. Taking into account these results, zero tillage with residue retention can clearly be a part of an integrated watershed management scheme towards sustainable agriculture in the tropical highlands. It is clear that to develop new management practices to improve water use, reduce erosion and enhance human labor/animal power focus must be on the use of conservation agriculture both for rainfed as well as irrigated production systems and be fine tuned for each system.  相似文献   
10.
Dynamics of nitrogen (N) and carbon (C) were investigated in a loamy soil amended or injected with pig slurry. Treatments were with or without acetylene C2H2 (which is assumed to inhibit reduction of nitrous oxide (N2O) to dinitrogen (N2), and soil cores were conditioned for 15 days at 25°C while pH, production of CO2 and N2O, ammonia (NH3) emission and (nitrate) (NO3 ) and (ammonium) (NH4 +) concentrations were monitored. There was no significant difference in CO2 production between the injected and surface applied pig slurry treatments, and within 15 days ca. 5% of the C applied had been mineralized, if no priming effect was assumed. Neither the production of N2O nor the total gaseous production of the denitrification process (N2O plus N2) were affected by the way the pig slurry was added to the soil. NH3 volatilization, however, decreased by 90% when pig slurry was injected. The addition of C2H2 significantly increased the CO2 production and the concentration of NH4 +, but significantly decreased the concentration of NO3 . It was concluded that the injection of pig slurry to a dry soil was an acceptable alternative to its application to the soil surface, as not only was NH3 volatilization reduced, but the production of N2O and N2 through denitrification was not stimulated. It is also suggested that the composition of the organic C fraction in the pig slurry, most likely the concentration of fatty acids, had an important effect on the dynamics of N and C in the soil. Received: 12 May 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号