首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   3篇
  4篇
综合类   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其中R2RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。  相似文献   
2.
基于MODISNDVI多年时序数据的农作物种植识别   总被引:26,自引:18,他引:8  
为了获取陕西省农作物种植模式和类型分布信息,实现对于多年农作物长势分析及精确的估产和耕地生产力的估算,该文以2003-2012年的MOD09Q1时间序列遥感数据集为数据源,以陕西省主要农作物冬小麦、夏玉米、春玉米、水稻和油菜为研究对象,利用Savitzky-Golay滤波方法重建NDVI长时间序列数据集,充分利用农作物的物候信息,构建农作物年际间动态阈值方法,实现了农作物种植模式和类型的识别。通过对混合像元进行分解,更精确地提取农作物种植面积信息。利用空间和定量2种方式对农作物类型识别结果进行分析验证,空间对比分析得到分类的总体精度和Kappa系数为88.18%和59.64%,定量对比分析得到分类的总体一致性为87.56%。研究结果表明,结合物候信息与时间序列数据利用该文的分类方法可以有效的识别大尺度农作物信息。  相似文献   
3.
已有研究发现,植物的最大净光合速率(A_(max))决定了其潜在的光合能力。以冬小麦为研究对象,以2017年、2018年4-6月获取的拔节期、挑旗期、开花期和灌浆期4个重要生育期的不同叶位叶片的原始光谱(350~1 350 nm)与气体交换数据为基础,旨在建立基于连续小波变换的冬小麦叶片最大净光合速率估算模型。结果表明,基于连续小波变换方法估算的模型,2017年、2018年的建模决定系数(R~2)分别为0.62、0.77,验证R~2分别为0.65、0.77,其估算模型的精度远高于基于植被指数建立的模型。通过对比分析几种植被指数与高光谱数据对最大净光合速率的估算结果发现,植被指数对小麦叶片A_(max)的解释能力较低,无法对光合能力作出正确且精确的估算。基于连续小波变换方法对冬小麦叶片A_(max)的估算精度较高,可以作为预估冬小麦生长状况、产量的依据。  相似文献   
4.
耕地非粮化对粮食生产和农业可持续发展构成潜在威胁,精准监测不同的耕地非粮化类型对制定针对性的农业管理政策至关重要。该研究以河北省石家庄市藁城区为研究区,首先采用最大类间方差算法(OTSU)提取果园和耕地范围,然后利用Google Earth Engine(GEE)云计算平台构建了基于Sentinel-2遥感数据的特征集,包括光谱特征、物候特征和NDVI(normalized difference vegetation index)时序特征。结合面向对象分割和随机森林(radom forest, RF)、时间加权的动态时间规整(time-weighted dynamic time warping, TW-DTW)算法,构建了4种不同的分类模式用于提取粮食作物和露天蔬菜、大棚种植等非粮食作物。通过选择最优模式,提取了研究区2019-2022年间不同非粮化类型的空间分布信息,并探讨了不同模式的优点和局限性。结果表明:1) 采用面向对象的机器学习模式进行耕地内作物分类的精度最佳,两个生长季内总体精度分别达到93.23%和90.10%,Kappa系数分别达到0.91和0.88;2) 基于时间序列匹配的模式在区分粮食作物和其他地类方面表现出较高的准确性,冬小麦、玉米和大豆的用户精度分别高于95.60%、74.70%、82.70%,制图精度分别高于97.70%、86.40%、93.10%;3) 利用面向对象的机器学习模式进行耕地非粮化信息提取,在两个作物生长季的总体精度为87.00%和81.00%。分析耕地非粮化结果发现,藁城区2019-2022年的年际性非粮化面积为2753.09 hm2,其中果园占比最高;而季节性非粮化结果显示,秋粮非粮化面积(3174.86 hm2)明显高于夏粮非粮化面积(1060.27 hm2)。该研究利用Sentinel-2时序遥感数据,为一年两熟区耕地非粮化监测提供一种新的思路,可以为制定差异化农业管理政策提供依据。  相似文献   
5.
土壤有机质含量是耕地质量定级的依据,是耕地质量评价的核心内容之一,因此,精准高效地获取土壤有机质含量非常重要。高分辨率遥感技术和谷歌地球引擎(Google Earth Engine,GEE)云计算平台的出现,为土壤有机质的高效反演提供了新的途径和方法。该研究以藁城区的Sentinel-2A MSI数据和Landsat8 OLI 数据为主要的数据源,结合Sentinel-1 SAR数据、ECMWF/ERA5气象数据和USGS/SRTMGL1_003高程数据,分别采用随机森林(Random Forest,RF)、梯度升级树(Gradient Boosting Decision Tree,GBDT)和支持向量机(Support Vector Machine,SVM)算法,在GEE平台对藁城耕地土壤有机质含量进行反演。结果表明:1)基于Sentinel-2A建立的模型(模型A*)在预测SOM含量方面优于基于Landsat8建立的模型(模型B*),GDBT算法下的Sentinel-2A的全变量模型取得了最佳结果(R2=0.759,RMSE= 2.852 g/kg);2)模型A-1对比模型A-0增加了红边波段,模型A-1比模型A-0提高了9.752%;3)从不同的预测算法来看,GDBT算法能较好地适用于研究区的土壤有机质预测,GDBT算法、Sentinel-2A与GEE的结合是SOM预测制图的一种有效方法。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号