首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
基础科学   1篇
  4篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
风送式喷雾机导流器结构优化及试验研究   总被引:6,自引:5,他引:1  
风送式喷雾机风筒内部结构影响风场的分布及喷雾机的效率。该文利用仿真方法,研究了风筒内导流片数目对内部流场的影响;仿真研究柱形导流器、锥形导流器及半椭球形导流器结构对风筒流场的出风速度、压力损失的影响;以效率高为优化目标,优化导流器的形式及结构;利用试验样机,对安装优化后导流器的风筒进行了实际测量,并与导流器优化前的测量结果进行了对比分析。仿真及试验结果表明:导流片数目一般以4~5为宜;导流器优化后,当风扇工作转速为2926.5r/min时,可节约电能4.88%。导流片的安装既有利于将风筒内的旋转气流转化为轴向的气流,同时又产生压力损失;导流器的结构对风筒的压力损失率、出风口风速产生较大的影响,其中半椭球导流器产生的压力损失率最小。  相似文献   
2.
宽喷幅风送式喷雾机空间气流速度分布规律   总被引:7,自引:7,他引:0  
为了研究宽喷幅风送式喷雾机外部空间气流的分布,以期为优化其设计提供技术依据。该文对自制的宽喷幅风送式喷雾机样机外部气流速度场进行了测试,应用自由紊动射流理论对试验数据进行分析,获得了气流速度场的分布规律与变化机理。结果表明:风机在不同供电频率44、46、48、50 Hz时,宽喷幅风送式喷雾机轴心上的纵向时均风速随送风距离的变化均呈幂函数变化规律,气流中心速度符合三维自由紊动射流纵向中心速度幂函数衰减规律;宽喷幅风送式喷雾机的喷幅与送风距离成线性关系。根据试验数据,回归了射流边界曲线,射流与地面之间的涡结构使出风口长轴方向的射流边界曲线上下不同,两射流边界线相交点的"虚源"不在水平轴线上,上下射流边界线与轴向水平线之间的夹角分别为20.5°和28.8°;同时,沿出风口短轴方向的两射流边界曲线变化规律基本相同,两射流边界线相交点的"虚源"处在水平轴线上,射流边界线与轴向水平线之间的夹角分别为4.18°和4.23°;在纵向送风距离分别为0.5、1、1.5、2和2.5 m处的断面上,气流纵向时均速度的分布沿出风口的短轴方向上分布相似、而沿长轴方向上分布不相似;气流速度场三维曲面重构后发现,沿出风口的长轴方向上,在外边界层的内侧,风速的分布出现2个高风速区。  相似文献   
3.
为解决果园泵房偏僻、难以防盗且需人工操作灌溉与喷雾设备的问题,设计了果园泵房智能监控系统。该系统以单片机为核心,结合双音多频远程数据传输技术,实现了电话拨号报警和远程控制两大功能。在选定果园对系统进行实地测试,系统功能成功率为96.5%,报警平均响应时间为4.58 s,远程控制平均响应时间为23.27 s,每次通信成本为通话费用。试验结果表明,该系统能实现其设计功能,满足果园泵房内防盗和远程控制灌溉与喷雾设备的要求。  相似文献   
4.
宽喷幅风送式喷雾机扩幅喷筒优化设计及试验   总被引:4,自引:4,他引:0  
风送式喷雾机喷筒结构的不同,影响其流场的分布及喷幅的大小,该文提出在原有的圆形喷筒喷雾机的基础上附加扩幅段的方法,使同一台风送式喷雾机具有不同的喷雾特性。利用数值计算方法,采用RNG k-ε模型,对附加3种不同类型扩幅段的喷筒进行了数值计算与分析。仿真分析发现,喷筒中气流运动分为3个阶段:靠近风扇区域中,气流呈紊流状态,在柱形喷筒与收缩喷筒区域中,层流与紊流并存,而在扩幅喷筒中,气流存在紊流并发生了流速的重新分布。其中,3种类型的喷筒中,在柱形喷筒及收缩喷筒内,I型和III型喷筒内气流速度的突变区域较多,II型喷筒中气流速度的突变区域较少;在扩幅喷筒中,I型和III型喷筒内的紊流区域较多,使得I型和III型喷筒效率较低。以喷筒效率高为优化目标,获得了宽喷幅风送式喷雾机扩幅段喷筒的优化结构,并试制了试验样机;利用试验样机,对宽喷幅风送式喷雾机的出风口风速及喷幅进行了实际测试。试验结果表明,采用优化后的扩幅喷筒,在出风口处实测的流场数据与仿真结果之间的误差在-1.49%~1.91%内;宽喷幅风送式喷雾机喷幅与送风距离间成二次多项式变化规律,在喷筒轴线方向上距出风口4.5 m处出现的喷幅最宽为3.56 m,与同功率下的未加扩幅喷筒的风送式喷雾机最大喷幅2.29 m相比,喷幅扩大了55.46%。  相似文献   
5.
果园管道喷雾系统药液压力的自整定模糊PID控制   总被引:9,自引:7,他引:2  
果园管道喷药系统具有非线性、大时滞特性,且管道中药液的压力随喷嘴数目变化而波动。为此,对管道中药液压力采用了带变速积分、微分先行优化算子的自整定模糊PID控制。根据管道中压力的实际值与设定值间的误差及误差变化趋势,在线调整模糊PID的参数,经带有变速积分、微分先行优化算子的增量式PID算法计算,获得控制量以控制管道中药液的压力。试验结果表明:采用这种控制方法,与不使用自整定模糊PID参数的变速积分、微分先行PID控制相比,管道中压力响应的上升时间缩短18.42%,调整时间缩短12.56%,最大超调量减小4.43%,误差减小50%。该控制方法能满足果园管道喷雾系统中对压力控制的要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号