首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
  国内免费   2篇
基础科学   1篇
  16篇
畜牧兽医   1篇
植物保护   1篇
  2023年   4篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
生物结皮是一种广泛分布于干旱半干旱地区土壤表层的特殊复合体,为揭示其对土壤水汽吸附与凝结过程的影响,该研究通过室内定量水汽吸附试验和野外对水汽凝结的连续观测,对黄土高原典型生物结皮(藻结皮、藻藓混生结皮、藓结皮)与裸沙的水汽吸附和凝结特征进行对比研究。结果表明:生物结皮的覆盖显著提升了表层土壤的水汽吸附能力,其平均水汽吸附量比裸沙高66.7%。不同类型生物结皮水汽吸附能力差异显著,表现为藓结皮最高,混生结皮次之,而藻结皮最低。GAB(Guggenheim-Anderson-de Boer)吸附模型能较好的描述生物结皮土壤水汽吸附与解吸附过程,模拟结果决定系数R20.99、均方根误差RMSE0.001 2 g/g及平均相对偏差百分比E16.0%;此外,生物结皮加剧了土壤水汽吸附与解吸附曲线之间的滞后效应,其滞后指数平均是裸沙的2.0~2.9倍。水汽凝结结果显示,水汽凝结过程均受气温与相对湿度等气象因子制约,且生物结皮覆盖下表层土壤的水汽凝结和蒸发过程相较于裸沙更为迅速。同时,生物结皮的日均水汽凝结量是裸沙的1.6~1.8倍。综上,干旱和半干旱地区生物结皮覆盖显著提高了表层土壤的水汽吸附能力、并增加了水汽凝结量,对区域表层土壤的水分运动过程产生了重要影响。  相似文献   
2.
稻田—田埂过渡区土壤优先流特征研究   总被引:5,自引:1,他引:4  
李胜龙  易军  刘目兴  张君  杨燕  张海林 《土壤学报》2018,55(5):1131-1142
为揭示田埂对稻田—田埂过渡区土壤水分渗漏的影响,对比不同位点(田内、过渡带和田埂)优先流特征差异,采用室外亮蓝染色示踪方法,对江汉平原典型稻田—田埂过渡区进行研究。结果表明:过渡区土壤染色面积比(SAR)随深度的增加呈波动下降,其中0~20cm土层SAR较高,占剖面总SAR的53.85%~88.55%。不同位点土壤SAR差异明显,0~20 cm土层平均SAR由大到小依次为田内、过渡带、田埂,20 cm以下各位点SAR均较低,但田埂平均SAR高于田内。各位点水平剖面染色结果与垂直染色结果能较好对应,且随着深度增加,土壤染色区域急剧减少。各位点染色路径数(SPN)与SAR显著相关,田埂中、下层土壤SPN均高于田内。染色路径宽度(SPW)结果显示,0~20 cm田内以10~80 mm和大于80 mm SPW为主,过渡带和田埂大于80 mm SPW较少,均以小于10 mm和10~80 mm为主。各位点SPW的差异反映在水流类型上,田内为非均质指流—高相互作用大孔隙流,过渡区和田埂以混合作用大孔隙流—高相互作用大孔隙流为主。水分渗漏路径结果显示,田内水分由过渡带和田埂的垂直和侧向渗漏较强,且田沟田埂侧向流较田间田埂明显。田埂是稻田水分快速流失的主要区域,加剧了稻田水肥流失和水环境污染风险。本研究可为稻田水分保持和制定合理施肥、灌溉等措施提供依据。  相似文献   
3.
亚热带红壤区不同土地利用方式下的土壤剖面水流特征   总被引:5,自引:2,他引:3  
以江西省鹰潭市的典型旱地、稻田和林地为研究对象,采用野外亮蓝染色示踪试验结合室内图像处理的方法,量化了各样地土壤剖面染色特征参数,明确了水流类型的剖面分布规律,并揭示了土壤理化性质对水流特征的影响机制。结果表明:染色面积比(SAR)随着土层深度的增加急剧降低,0—60 cm土层的平均SAR表现为稻田(28.16%)高于旱地(21.95%)和林地(18.64%),SAR差异主要体现在5—25 cm土层;染色路径数(SPN)随着土层深度的增加先增加后减小,整个剖面的平均SPN为稻田最多(20条),旱地其次(12条),林地最少(9条)。各样地0—20 cm土层染色路径宽度(SPW)均以1—10 cm为主,水流类型从上至下依次为均质流、非均质指流和高相互作用大孔隙流;对于20 cm以下土层,旱地和稻田的SPW以1 cm为主,水流类型分别以低相互作用大孔隙流和混合作用大孔隙流为主,林地以1—10 cm的SPW为主,主要水流类型为高相互作用大孔隙流。有机质含量、根系密度和土壤机械组成等性质影响了土壤的孔隙特征,进而影响了土壤的饱和导水率和水流特征。为提高红壤区的水分利用效率、减少水土流失,可以通过破除旱地犁底层、减少稻田干湿交替下的裂隙发育,以及增加林地植被多样性等多种方式实现。  相似文献   
4.
黄土高原水蚀风蚀交错区藓结皮覆盖土壤的蒸发特征   总被引:1,自引:1,他引:0  
土壤蒸发是地表水分平衡及能量交换的组成部分,是干旱和半干旱区水文循环的关键环节。为探究黄土高原水蚀风蚀交错区生物结皮对土壤蒸发的影响,以风沙土和黄绵土上发育的藓结皮为研究对象,通过模拟蒸发试验和自然蒸发试验,测定了不同蒸发条件下藓结皮覆盖土壤和无结皮土壤的蒸发强度,分析了藓结皮覆盖土壤的蒸发特征及其与无结皮土壤的差异。结果表明:(1)模拟蒸发试验中,藓结皮对土壤蒸发过程的影响表现出明显的阶段性,与无结皮土壤相比,藓结皮使土壤蒸发强度在大气蒸发力控制阶段降低了3.04%~15.46%(0.21~1.05 mm/d),在土壤导水率控制阶段增加了32.26%~187.07%(0.58~2.54 mm/d),在水汽扩散控制阶段增加了12.91%~87.73%(0.05~0.34 mm/d);土壤累积蒸发量大小表现为藓结皮覆盖土壤无结皮土壤。(2)自然蒸发试验中,6月16日至9月3日,无降雨时藓结皮覆盖土壤和无结皮土壤的蒸发速率均较低,藓结皮覆盖土壤的日平均蒸发量是无结皮土壤的1.12~1.42倍,自然降雨后二者的蒸发速率快速增加,降雨后土壤蒸发量是降雨前的2.20~8.55倍;在8月10—22日观测期内,藓结皮在雨后增加了土壤含水量,并对土壤蒸发起到促进作用,藓结皮覆盖土壤的累积蒸发量显著提高了19.22%~64.09%(F=21.85,P0.01)。研究表明,藓结皮覆盖增加了风沙土和黄绵土的水分蒸发强度,可能会对黄土高原水蚀风蚀交错区土壤水分保持产生不利影响。  相似文献   
5.
生物结皮普遍存在于干旱和半干旱地区土壤表层,对土壤水分有重要影响。为了进一步探究生物结皮对表层土壤水力学特性和水分运动过程的影响,该研究以黄土高原风沙土和黄绵土上发育的藓结皮为研究对象,通过野外采样与室内试验相结合,测定了藓结皮覆盖土壤和无结皮土壤的Boltzmann变换参数、土壤水分扩散率、入渗过程、比水容量和非饱和导水率,对比分析了有无藓结皮覆盖对表层土壤水分运动参数的影响。结果表明:藓结皮覆盖抑制了表层土壤水分的扩散,藓结皮覆盖土壤的Boltzmann变换参数和水分扩散率分别比无结皮土壤降低7.9%~27.3%和99.2%~99.6%;藓结皮覆盖后表层土壤渗透性显著降低,其水分入渗参数(初始入渗率、稳定入渗率、平均入渗率、累积入渗量)和非饱和导水率分别降低了17.1%~55.4%和84.8%~92.3%;藓结皮显著提升了表层土壤的持水和供水能力,藓结皮层的水分常数(田间持水量、萎蔫系数、重力水含量、有效水含量和易利用水含量)比无结皮土壤高40.9%~1 233.3%,土壤水吸力在100k Pa时的比水容量比无结皮土壤高7.4%~1 540.5%;相比黄绵土,藓结皮覆盖对风沙土的渗透性影响较小,而对土壤持水和供水性的影响较大。综上,黄土高原藓结皮覆盖降低了土壤渗透性,同时显著提高了表层土壤的水分有效性,这可能导致土壤表层在雨后截留较多水分,进而使土壤水分分布趋于浅层化,并改变该地区的土壤水分有效性和植物水分利用策略。  相似文献   
6.
基于知识图谱分析的土壤氮循环功能基因研究进展   总被引:2,自引:1,他引:1  
土壤氮循环功能基因广泛地参与包括固氮、氨化以及硝化和反硝化作用等一系列生态过程,是氮素生物地球化学循环的关键组成部分,在很大程度上影响土壤生产力、全球环境变化以及碳中和可持续发展。近几十年来,分子生物学和微生态学技术的快速发展极大地促进了与土壤氮循环密切相关的功能基因以及其功能微生物群落特征等方面的研究。本研究利用检索自Web of Science数据库中2001—2020年期间土壤氮循环功能基因相关文献,结合R语言科学知识图谱分析方法,从发文量、高被引论文、高频关键词及历史直接引文等方面对土壤氮循环功能基因研究现状进行了系统分析,并总结了土壤氮循环功能基因领域的研究动态、热点和发展趋势。结果表明:1)应用分子生物学技术挖掘土壤氮循环相关微生物功能基因及群落结构探索土壤氮循环的微生物学机制,是当前土壤氮循环研究领域的热点及切入点。2)土壤氮循环功能基因研究主要集中于3个方面:(1)利用宏基因组学等技术对土壤氮循环相关的功能基因进行筛选、识别和注释,从而发现新的微生物功能基因序列、更新引物数据库等;(2)环境因子及管理措施对土壤氮循环相关微生物指标的影响;(3)利用功能基因丰度表征土壤氮...  相似文献   
7.
选取水耕年限分别为2年、19年和>100年稻田,通过野外样品采集与室内分析相结合的方法,对比了稻田田内和田埂土壤物理性质与水-氮分布差异,揭示了水耕历史对稻田-田埂过渡区土壤物理性质与水-氮流失过程的影响机制。结果表明,耕作活动影响了稻田-田埂过渡区土壤容重、孔隙、土壤水分特征曲线和饱和导水率(Ks)等物理性质。随着水耕年限的增加,田内耕作层与田埂表土层、田内犁底层与田埂硬质层的容重差异增大;耕作层的中小孔隙(直径<0.03 mm)含量增加,其他土层的总孔隙和大孔隙(直径>0.3 mm和>0.03 mm)含量降低;田内土壤的Ks下降速度较田埂更快。在测定的吸力范围内(0~100 kPa),2年和19年的耕作层与表土层持水能力相近,而100年耕作层持水能力高于表土层;2年和100年的硬质层与犁底层持水能力相近,而19年硬质层持水能力更强;19年和100年田埂底土层持水能力较田内强。随着水耕年限增加,耕作层与表土层Ks差异减小,硬质层与犁底层Ks差异增加,2年、19年和100年硬质层的Ks分别是对应犁底层的1.10倍、6.90倍和6.32倍,100年田埂底土层的Ks...  相似文献   
8.
东北地区不同耕作方式农田土壤风蚀特征   总被引:7,自引:3,他引:4  
为探究不同耕作方式农田土壤风蚀特征,揭示风蚀对表层土壤理化性质及养分含量的影响,以东北地区典型农田土壤(黑土和风沙土)为研究对象,通过野外集沙仪定点监测与室内理化分析等方法,对不同耕作方式(垄作、免耕)和不同地表覆盖措施(无覆盖、留茬、覆盖)下的土壤风蚀特征展开研究。结果表明:(1)风沙土的输沙量显著高于黑土,在0—100cm高度范围内风沙土的输沙量平均为黑土的168倍。随高度的上升输沙量急剧减少,其中0—10cm输沙量最大,占总输沙量的50%以上,40cm以上则无明显风蚀物;(2)不同耕作方式下,免耕农田土壤风蚀输沙量较垄作样地减少了66.0%~94.1%;而相同耕作措施下,不同地表覆盖的输沙量表现为无覆盖>留茬>覆盖,与无覆盖相比,留茬及秸秆覆盖下的输沙量可以减少90.3%~99.4%;(3)受风蚀影响,表层土壤颗粒、有机质及养分流失严重,其中风蚀物的砂粒含量是表层土壤的1.06~1.42倍,且10—20cm风蚀物中有机质、全氮和全磷含量均比表层土壤高;(4)通过修正风蚀方程(RWEQ)估算得出,垄作无覆盖(RTNF)风蚀模数高达181.7~86582.9t/(km^2·a),风蚀剧烈,而免耕覆盖(NTF)的风蚀模数仅为9.89t/(km^2·a),为微度风蚀。研究显示垄作及无覆盖方式下农田土壤风蚀程度剧烈,加剧了表层土壤颗粒和养分流失的风险,而免耕和地表覆盖能有效缓解风蚀危害。  相似文献   
9.
不同水耕年限稻田土壤水分渗漏与保持特征   总被引:3,自引:2,他引:1  
以江汉平原连续水耕年限大于100年(老稻田)和由旱耕改为水耕17年(新稻田)的稻田为研究对象,通过测定土壤剖面基本理化性质和水力学参数,揭示了2种稻田土壤水分渗漏和保持特征差异。结果表明:(1)新稻田土壤的平均饱和导水率(Ks)为32.05cm/d,显著高于老稻田(17.91cm/d)。新、老稻田土壤Ks均表现为耕作层底土层犁底层,新稻田耕作层Ks分别为犁底层和底土层的6.3倍和5.7倍,老稻田耕作层Ks分别是犁底层和底土层的6.9倍和4.0倍。(2)老稻田土壤持水能力高于新稻田,同一剖面不同土层持水能力表现为耕犁底层底土层耕作层。0.03mm当量孔径的孔隙比例随土壤剖面深度的增加而降低,新稻田各层土壤比例大于老稻田。(3)新、老稻田最大有效水含量随土壤深度的增加而降低,老稻田各土层(32.25%~46.59%)均高于新稻田(26.99%~36.74%)。老稻田平均总库容(135.8mm)大于新稻田(124.4mm),新稻田滞洪库容(11.21~38.74mm)大于老稻田(8.1~60.74mm)。旱耕改水耕加重了水资源的消耗,增加了浅层地下水污染风险。  相似文献   
10.
不同植稻年限土壤剖面基本性质与水-氮分布的关系   总被引:1,自引:0,他引:1  
张君  刘目兴  易军  张海林  李胜龙  段赫  杨倩 《土壤》2019,51(6):1188-1195
在江汉平原典型农业区选定不同水稻种植年限(2、18、100a)的稻田,采用野外调查与室内分析相结合的方法,量化不同稻田土壤剖面基本性质和水–氮分布特征,以揭示内在原因,探讨适宜不同水稻种植年限稻田的水–氮管理方式,为提高稻田水–氮利用率和减少稻田面源污染提供科学依据。结果表明:对于不同水稻种植年限农田,土壤剖面基本性质差异明显。耕作层和犁底层厚度随水稻种植年限的延长而增加;土壤有机质在耕作层富集,且随水稻种植年限的延长含量增加;耕作层土壤容重随水稻种植年限的延长而减小,犁底层土壤容重则增大;受耕作和淋溶条件的影响,犁底层和心土层的黏粒含量随水稻种植年限的延长而增加;饱和导水率(Ks)随水稻种植年限的延长而降低,犁底层Ks差异较大,2、18、100a稻田犁底层Ks分别为37.02、8.45、3.11cm/d。土壤剖面基本性质的差异影响水–氮的剖面分布特征。土壤水分和硝态氮含量随水稻种植年限的延长而增加,2、18、100 a稻田土壤剖面(0~100 cm)平均含水量分别为0.39、0.46、0.54cm3/cm3,硝态氮含量分别为3.75、6.27、9.85mg/kg。铵态氮储量远低于硝态氮储量,且受水稻种植年限影响较小;2、18、100 a稻田土壤剖面铵态氮与硝态氮储量比值分别为0.61、0.39和0.30。在灌溉和施肥方式上,水稻种植年限短的稻田适合少量多次的管理方式以减少渗漏损失;而年限长的稻田可适当提高单次灌溉量以减少灌溉次数,进而减少劳力消耗。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号