排序方式: 共有47条查询结果,搜索用时 125 毫秒
1.
以时均化的N-S方程和考虑旋转与曲率影响的修正的k- 湍流模型为基础,在贴体坐标系中运用SIMPLEC算法,对双吸式离心叶轮内流进行三维湍流数值模拟。计算得到叶轮内的速度、压力场分布,预估了扬程、水力效率并与试验值进行对比。计算结果表明,在双吸式叶轮中,从叶轮进口到出口压力逐渐增加;在叶片区域,处于前盖板和对称面之间的中间截面上,叶片工作面附近的压力明显大于背面附近的压力,且从对称面到前盖板各中间截面上的压力梯度显著增加;流动关于对称面对称,在对称面上不存在轴向速度;设计工况下叶轮出口断面上压力分布明显比其它工况均匀, 因此水力效率最高。 相似文献
2.
圆盘摩擦损失严重影响离心泵尤其是低比转数离心泵的性能,准确计算其大小是预测离心泵性能的重要基础之一。虽然计算离心泵圆盘摩擦损失的公式较多,但实际计算表明这些公式的计算结果都存在较大偏差。通过对不同圆盘摩擦损失计算公式的比较与分析,提出了不同比转数的离心泵圆盘摩擦损失计算应采用不同的公式。以优秀离心泵为基础,采用回归分析的方法修正了圆盘摩擦损失的计算公式。实例计算表明修正后的圆盘摩擦损失公式计算结果更准确,为工程实际应用提供了一种准确的计算方法。 相似文献
3.
采用Mixture多相流模型、扩展的标准k-ε湍流模型与SIMPLEC算法,应用计算流体力学软件Fluent对双流道泵全流道内的固液两相湍流进行了数值模拟,并将计算结果与清水单相流数值模拟及泵外特性性能试验进行了对比,揭示了不同粒径及颗粒体积浓度条件下双流道泵全流道内的固液两相流动规律.研究结果表明:在叶轮流道内,固相体积浓度分布极不均匀,颗粒主要集中于叶轮出口处的工作面和后盖板上,但是随着颗粒浓度和粒径的减小,会出现颗粒向背面迁移的趋势;在蜗壳流道内,颗粒主要集中于靠近蜗壳出口侧的流道区域,颗粒运动轨迹紊乱,少部分颗粒脱离叶轮后能直接从蜗壳出口流出,大部分颗粒撞击蜗壳壁面,留在蜗壳内转动数圈才能流出;颗粒浓度变化对固相的离析作用影响相对较小;粒径变化对固相的离析作用影响较大,粒径越大,颗粒撞击点愈加集中于叶轮工作面,固相的离析作用越明显;相同体积流量下,泵进出口总压差随颗粒浓度和粒径的增加而减小. 相似文献
4.
为了研究不同型式隔舌对离心泵动静干涉作用的影响,分别对长舌、中舌和短舌3种不同型式隔舌的离心泵采用大涡模拟动态亚格子湍流模型进行三维非稳态数值模拟,通过非定常数值计算获得了不同型式隔舌离心泵隔舌处压力脉动特性和作用在叶轮和蜗壳上的径向力特性,并对其进行比较分析。结果表明:由于受到动静干涉的影响,不同工况下作用在叶轮上的径向力矢量图呈明显的六角星分布;各工况下作用在蜗壳上的径向力矢量图基本呈椭圆形分布;采用短舌的离心泵扬程增高,高效区增宽;作用在叶轮和蜗壳上的径向力大小和方向时刻都在变化;采用中舌和短舌时,隔舌处的脉动幅值和作用在叶轮上的径向力均减小,说明采用中舌和短舌可以改善了隔舌处压力脉动和作用在叶轮上的径向力。 相似文献
5.
6.
研制了一种新型旋转式喷头——隙控式全射流喷头,介绍了其结构形式及工作原理。首次对二种PX10型号的全射流喷头及一种PY210摇臂式喷头的水力性能进行了对比试验及分析。研究表明:隙控式全射流喷头的流量大于试验用PY2摇臂式喷头8%左右,射程比摇臂式喷头的射程明显加大,最大增幅达到31%。全射流喷头水量分布均匀性与摇臂式喷头相当,但末端雨滴直径小于摇臂式喷头。由于其独特的射流元件及反向机构,全射流喷头结构简单,性能优良,价格低廉,具有显著的节能效果及良好的市场前景。 相似文献
7.
为研究双流道泵内由叶轮/蜗壳相互作用引起的非定常流动特性,基于滑移网格和RNG湍流模型计算双流道泵内的非定常流动。计算结果表明:在一个周期内,随叶轮流道相对于隔舌位置不同,其内相对速度、静压及总压分布呈周期性变化;当叶轮流道靠近蜗壳出口侧时,相对速度、静压及总压分布规律性较强;喉部为蜗壳内循环流体与叶轮排出流体的混合区域,流动最为复杂;蜗壳内各监测点的静压呈周期性变化,远离蜗壳出口的监测点的静压脉动明显大于靠近蜗壳出口的监测点的静压脉动,且越靠近喉部的监测点的静压变化越大,非定常流动特性越强烈;与定常计算相比,非定常计算所得有效扬程更符合实际情况,大于实测扬程且相对偏差仅为10%。 相似文献
8.
9.
10.
为了深入探索国内原创旋转式射流喷头结构参数与喷洒均匀性之间的关系,选用10型喷头为研究对象,在工作压力为300kPa下测量出9种不同位差H、作用区长度L、收缩角θ的喷嘴的径向水量分布。采用Matlab语言编制程序绘制出正方形布置其组合间距为8,9,10,11,12和13m喷嘴的三维水量分布图,并对组合均匀性系数进行了仿真计算。结果表明:旋转式射流喷头的水量分布同时受到位差×作用区长度(H×L)、收缩角θ等结构参数的影响,当位差×作用区长度(H×L)、收缩角θ增大时,距喷头近处水会更多,远处水会更少;当位差×作用区长度(H×L)=2.4mm×20mm和2.6mm×24mm时,组合喷洒均匀性系数的数值以及它随组合间距的变化趋势都很接近,位差×作用区长度(H×L)=2.8mm×28mm喷嘴的组合均匀性系数变化趋势更加平稳;组合间距为8~10m时,不同θ的组合均匀性系数相差在2%以内;组合间距为10m以上时,组合均匀性系数随着θ的增大而增加。对于9种试验喷嘴,组合均匀性系数均随着组合间距的增加而降低,初步提出了旋转式射流喷头在正方形布置时最佳组合间距为10~12m,为其在工程应用中提供理论数据。 相似文献