首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   7篇
     8篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
不同生长期柑橘叶片磷含量的高光谱预测模型   总被引:3,自引:2,他引:1       下载免费PDF全文
针对传统柑橘叶片磷含量检测耗时费力、操作繁琐且损伤叶片等弊端,该研究引入高光谱信息探索柑橘叶片磷含量快速无损检测与预测模型,选ASD FieldSpec 3光谱仪采集柑橘4个重要生长期的叶片反射光谱,同步采用硫酸-双氧水消煮-钼锑抗比色法测定叶片的磷含量;先用正交试验确定小波去噪的最佳去噪参数组合,再分别选拉普拉斯特征映射(laplacian eigenmaps,LE)、局部线性嵌入(locally-linear embedding,LLE)、局部切空间对齐(local tangent space alignment,LTSA)、等距映射(isometric mapping,Isomap)和最大方差展开(maximum variance unfolding,MVU)5种典型的流形学习算法对去噪后的光谱数据进行降维和特征提取,进而建立基于支持向量机回归(support vector regression,SVR)的柑橘叶片磷含量预测模型。结果表明,基于一阶导数谱的Isomap-SVR建模结果最佳,全生长期校正集和验证集模型决定系数分别为0.9430和0.8949。试验表明,5种流形学习算法皆适用于对柑橘叶片磷含量的预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献
2.
太阳能低功耗滴灌控制装置的设计与实现   总被引:3,自引:3,他引:0       下载免费PDF全文
针对山地果园的自动滴灌需求,研制太阳能供电的滴灌控制装置,该装置由STM8S105S6微控制器、实时时钟模块、脉冲式电磁阀及驱动模块、传感器接口、太阳能充电子系统组成,并提供LCD可定制用户界面。测试太阳能电池、锂电池、磷酸铁锂电池的输出特性与供电电压2.8~4.3V下静态功耗,试验表明,太阳能电池最大输出功率为169mW,系统供电电压在3V以上正常工作。平均静态电流最低为70μA。以容量为800mA·h的3.7V锂电池供电,系统在无太阳能补给下的待机时间达150d。太阳能电池每天以42.25mW的输出功率对系统充电30min可维持系统不间断运行。控制装置功耗低,太阳能充电,防雷击防水,适合于野外果园的滴灌系统自动控制。  相似文献
3.
兰花大棚内无线传感器网络433MHz信道传播特性试验   总被引:2,自引:2,他引:0       下载免费PDF全文
不同的应用环境对无线传感器网络的性能有一定的影响。该文针对兰花大棚环境中无线传感器网络节点部署的要求及其应用环境的特性,以433 MHz为载波频率,研究了无线射频信号的传播特性和无线信号与影响因素之间的关系,影响因素包括发射功率、数据包长度、距离、发射端位置等参数,获得了接收信号强度、丢包率等数据,并进行了统计分析。试验结果表明,该无线传感器网络信号的衰减符合对数模型,其决定系数R2最大为0.9246,最小为0.8753;发射功率为0和-5 dBm时,信号较强、通信成功率较高;发射功率处在0和-20 dBm时接收信号强度波动较大;在数据传输速率为1.2 kbps、和调制扩频为高斯频移键控方式等参数确定的情况下数据包的长度对丢包率的影响很小。在上述试验研究的基础上,建立了发射功率和接收信号强度之间的关系模型,模型参数与发射功率之间、传播环境因子n与发射功率之间成二次多项式关系,相关系数分别达到0.9967和0.8686;验证试验结果表明:该模型可以较好地预测不同发射功率不同通信距离的接收信号强度,为兰花大棚无线传感器网络的组建提供支持。此外,设计了接收信号强度三维曲面图和等高曲线图,可直观反映兰花大棚环境下无线信号的传播特性,为今后无线节点布置与组网提供依据。  相似文献
4.
紫色土区土壤初始含水量对坡面径流溶质流失的影响   总被引:1,自引:0,他引:1  
土壤初始含水量在一定程度上影响着紫色土区的水土流失.通过人工降雨试验,研究了紫色土在5%,10%,15%和20%共4种初始含水量条件下的入渗、产流和径流溶质迁移变化过程.结果表明:径流强度随降雨时间呈对数函数变化;降雨25 min后,径流强度趋于稳定值;在单位时间内,紫色土坡面平均径流深度和累积径流量随初始含水量的增大而增大,而坡面平均入渗率则呈相反的变化趋势.径流中PO3-4,K+,Br-浓度均呈现相同的变化规律,在开始产流时,径流溶质浓度很高,随后迅速衰减并逐渐趋于稳定.径流溶质的流失量随初始含水量的增加而增加,径流溶质从土壤迁移到径流的过程是从很小值迅速增大到某一峰值,然后逐渐衰减至稳定.指数函数比幂函数更适合描述紫色土丘陵区坡地径流溶质迁移变化过程.  相似文献
5.
针对山地橘园生长环境时空变异大,气候复杂多变的情况,对山地橘园无线监测系统进行了优化设计及试验,以实现橘园生长环境信息的有效监测。设计了适合山地橘园环境工作的信息帧结构,引入了双向指令控制机制,节点拓扑发现,路由监测以及节点信息多样化采集优化机制,以增强山地环境下橘园信息采集的鲁棒性和可控性。对橘园无线信道衰减情况进行了测试,引入阻挡和雨衰因子建立无线信道衰减模型,并用于指导橘园无线监测网络部署试验。无线信道衰减分析与网络部署试验结果表明,在复杂气候条件下,系统天线部署高度在1.5 m,单跳通信距离在30 m内,可较好地完成山地橘园环境信息采集和传输任务。744 h的连续监测运行试验数据表明,优化设计后的无线监测系统信息传输成功率得到了提高,30 m距离内的传输成功率在99.12%以上,监测系统工作稳定,运行良好,适于野外条件下山地橘园生长环境无人远程实时监测工作。  相似文献
6.
针对水稻生长过程环境因素变化较大以及传感器节点的能量大部分被无线射频阶段所消耗,设计了发射功率自适应的无线传感器节点,建立了长时间、稳定、高可靠性的稻田无线传感器网络。试验测试了水稻的株高、叶面积与生长天数的关系以及对无线信道的影响,结果表明水稻株高和叶面积的增加会降低无线信号强度和通信成功率;通过增大发射功率可以提高通信质量克服由于水稻生长因数对无线信道的影响。在软件设计方面,传感器节点采用睡眠、苏醒工作机制来降低功耗。同时为了延长工作时间、提高通信质量,提出了根据水稻生长周期、通信距离、接收信号强度、平均丢包率等因素自动调整节点发射功率的能量自适应功耗调整机制。田间试验结果表明,水稻田节点发射功率越大,有效通信距离越远,且水稻的密度和高度等对通信有重要的影响;节点发射功率在5 dBm以下时,发射功率的改变对节点工作电流影响较小,节点工作电流均小于40 mA;采用该机制对发射功率进行调整,增大节点发射功率可使通信成功率有大幅的提升;降低节点发射功率仍然保持良好的通信效果。水稻分蘖和抽穗2个生长时期的田间试验结果表明,采用发射功率自适应策略,提高了通信质量,平均丢包率在5%以下,通信成功率大于97%,达到了预期设计目的。  相似文献
7.
山地果园中低功耗无线滴灌控制装置设计与试验   总被引:1,自引:1,他引:0       下载免费PDF全文
针对山地果园布线困难,而大面积滴灌需要分区控制并集中管理的需求,构建了低成本、低功耗、能满足定时分区灌溉与集中管理需求的小型无线滴灌控制装置。装置采用无线通信方式,硬件选用低功耗微控制器与双稳态电磁阀,系统软件采用基于CC1100无线唤醒机制的低功耗间同步通信算法,具有避免信道拥塞的特点。试验表明,输入电压9 V时,控制系统静态电流为400 mA、无线唤醒工作电流为19 mA、工作周期内平均电流为439 mA;1节鹏辉450 mAh的AA电池可供系统至少可工作38 d;果园内RSSI信号衰减测试表明通信距离超过60 m,最高平均丢包率为23%;有遮挡的环境中数据丢包率将大于无遮挡环境,但接收信号强度相差不大;在果园环境中尝试使用电力线载波适配器、大功率WiFi无线网桥、GPRS DTU 3种远距离通信模块建立总控制器与远程监控端的数据链路,链路试验表明,GPRS DTU与大功率WiFi网桥均能成功建立通信链路。相比之下,GPRS有强的适应性;采用无线控制系统,系统准时开启电磁阀,开启时间误差小于5 min,土壤含水率变化呈现快速上升后缓慢下降的变化,灌溉区域的土壤含水率保持13%以上,可应用于岭南绝大部分山地果园。解决了控制装置的布线工程困难,实现可远程传输滴灌信息和监测滴灌状态,并可进一步实现分区控制与轮灌控制。  相似文献
8.
针对目前传统无人机视频传输系统抗干扰能力差、无法多用户监测的缺点,设计了一种基于WiFi的无人机网络实时视频监控系统。系统采用Tiny210嵌入式开发板为核心,通过架设在无人机上的网络监控摄像头和无线网关实现视频采集与传输;嵌入式系统采用Linux操作系统,采用Mjpg-Streamer视频传输方案;S5P210对网络摄像头获得的视频数据依据Mjpg-Streamer方案进行数据格式转换和压缩,通过无线网关上传到网络服务器,监控端计算机组通过监听相应的网络端口实现视频监控。测试结果表明,视频设定分辨率为76 800,当理论帧率在10至25 fps之间递增,视频传输的实际帧率随理论帧率变化接近线性增加,最大实际帧率达到3.27 fps,同时系统占用带宽在每秒1到2 M之间递增,当理论帧率大于25 fps,实际帧率保持最大传输帧率不变,而此过程系统占用带宽在理论帧率25至40 fps之间缓慢递增,大于40 fps后带宽开始下降。设置分辨率大于307 200,摄像头接近其工作极限,视频实际传输帧率维持稳定,与用户设定帧率无关,系统占用带宽平缓保持在每秒2到3 M之间,上位机画面清晰流畅,满足大数据传输下的视频传输要求。该研究为无人机实时性传输、减小运行功耗的深入研究提供了参考。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号