首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
林业   5篇
农学   1篇
  11篇
综合类   1篇
农作物   1篇
畜牧兽医   2篇
植物保护   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
Four homoisoflavonoids, 4-O-methylsappanol (1), protosappanin A (2), brazilin (3) and caeasalpin J (4), isolated from Caesalpinia sappan, were tested for inhibitory activity against Beauveria bassiana. Compound 1 showed activity against this fungus.  相似文献   
2.
The uptake of U by vegetables from soil and water has been studied in pots by spiking the soil and the irrigation water with U. An increase in the U level in vegetables has been observed with an increase of U content in the irrigation water and not with soil U. However, the concentration factor for the uptake of U by vegetables decreases with increase of U in water. The study of distribution of U in rice (Oryza saliva) indicates the discrimination of U by different parts of the crop. Among root, stem, and grain, the lowest concentration of U has been observed in grain (rice).  相似文献   
3.
The 3 × 2 m spacing currently used for eucalyptus plantations in the state of Andhra Pradesh, southern India does not permit intercropping from the second year. This discourages small landholders who need regular income from taking up eucalyptus plantations and benefiting from the expanding market for pulpwood. Therefore, on-farm experiments were conducted near Bhadrachalam, Khammam district (Andhra Pradesh) for over 4 years from August 2001 to November 2005 to examine whether wide-row planting and grouping of certain tree rows will facilitate extended intercropping without sacrificing wood yield. Eucalyptus planted in five-spatial arrangements in agroforestry [3 × 2 m (farmers’ practice), 6 × 1 m, 7 × 1.5 m paired rows (7 × 1.5 PR), 11 × 1 m paired rows (11 × 1 PR) and 10 × 1.5 m triple rows (10 × 1.5 TR)] was compared with sole tree stands at a constant density of 1,666 trees ha?1. Cowpea (Vigna unguiculata) was intercropped during the post-rainy seasons from 2001 to 2004, and fodder grasses (Panicum maximum and Brachiaria ruziziensis) were intercropped during both the seasons of 2005. At 51 months after planting, different spatial arrangements did not significantly affect height and diameter at breast height (dbh). Total dry biomass of eucalyptus in different spatial arrangements ranged between 59.5 and 52.9 Mg ha?1, the highest being with 6 × 1 m and the lowest with 10 × 1.5 TR, but treatment differences were not significant. The widely spaced paired row (11 × 1 PR) and triple row (10 × 1.5 TR) arrangements produced 62–73% of sole cowpea yield in 2003, 59–66% of sole cowpea yield in 2004, and 79–94% of sole fodder in 2005. In contrast, the 3 × 2 m spacing allowed only 17–45% of sole crop yields in these years. The better performance of intercrops in widely spaced eucalyptus was likely because of limited competition from trees for light and water. Intercropping of eucalyptus in these wider rows gave 14% greater net returns compared with intercropping in eucalyptus spaced at 3 × 2 m, 19% greater returns compared with that from sole tree woodlot and 263% greater returns compared with that from sole crops. Therefore, in regions where annual rainfall is around 1,000 mm and soils are fairly good, eucalyptus at a density of 1,666 plants per ha can be planted in uniformly spaced wide-rows (6 m) or paired rows at an inter-pair spacing of 7–11 m for improving intercrop performance without sacrificing wood production.  相似文献   
4.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   
5.
ABSTRACT

The chickpea breeding program in India has not yet considered the genotypic variation in phosphorus (P) efficiency, despite the fact that the largest proportion of chickpea-growing soils are P deficient. Since general P application to chickpea is at sub-optimum levels, efficient P-utilizing genotypes will perform better than others under P-deficient conditions. High levels of P application may induce zinc (Zn) deficiency in plants grown on Zn-deficient soils. Twenty chickpea genotypes were evaluated for their P efficiency at varied levels of added P, and the effect of P levels on Zn, iron (Fe), copper (Cu), and manganese (Mn) nutrition was studied in pot-culture experiments. Three criteria were used for evaluating P efficiency; shoot dry-matter yield without P, P-uptake efficiency (PUPE), and P-utilization efficiency (PUSE). Under P-deficiency conditions (control), the genotypes BG-256, HK-94-134, Phule-G-5, and Vikash produced the highest shoot biomass. However, genotypes that were found to be superior in the absence of P did not perform in a similar way under optimum P supply. Root dry weight showed a highly significant correlation with P uptake at all P levels. In the case of PUPE, genotypes KPG-59 and Pusa-209 were found to be superior to others. With increasing P levels, PUSE declined in all the genotypes. Increasing P up to 13.5 mg kg?1 soil increased Zn concentration, while further increase led to decreased concentration. Genotypes KPG-59, BG-256, RSG-888, and JG-315 showed Zn concentrations below the critical limit of 20 μg Zn g?1 dry weight (DW) at the high level of P application (27.0 mg kg?1). Iron concentration decreased with increasing P levels. Up to 13.5 mg kg?1 P application, Cu concentration increased and thereafter decreased. Manganese concentration gradually increased with the increasing P levels studied. Based on three criteria, BG-256 can be recommended for use in P-deficient conditions and can be good germplasm source material for chickpea-breeding programs for evolving P-efficient genotypes. Results also suggest that when selecting P-efficient genotypes of chickpea, it is essential to apply deficient micronutrients.  相似文献   
6.
Widespread multinutrient deficiencies in the semi-arid tropics (SAT) are among major factors for large gaps between farmers’ current crop yields and potential yields. In this study, we adopted a stratified soil sampling method to assess soil fertility-related constraints in farmers’ fields in eight districts of Andhra Pradesh in the semi-arid tropics of India. Most of the fields across all eight districts were critical in sulfur (61%–98% deficient fields); and up to six districts each in boron (83%–98% deficient fields), zinc (50–85% deficient fields), and soil organic carbon (55–97% deficient fields). Low soil organic carbon specifically indicates nitrogen deficiency. Phosphorus deficiency was critical in three districts (60–84%) while potassium in general was adequate. Soil test-based nutrient balancing through the application of sulfur, boron, and zinc in addition to farmers’ practice of adding only nitrogen, phosphorus, and potassium increased crop productivity by 8%–102%. Benefit–cost ratio (1.60–28.5) proved favourable to scale-up balanced nutrition. Better post-harvest soil health and residual benefits of sulfur, boron, and zinc up to four succeeding seasons indicated sustainability of the practice. Results showed that balanced nutrition is a way forward for sustainably improving farm productivity and livelihoods.  相似文献   
7.
Low organic matter, poor fertility and erosion are common features of rain‐fed Alfisols in southern India. Build‐up of organic matter is crucial to maintain sustainable production on these soils. The possibility of on‐farm generation of legume biomass [horsegram; Macrotyloma uniflorum (Lam.) Verdc.] by using off‐season rainfall was examined in two field experiments involving sorghum and sunflower from 1994 to 2003. The effects of this incorporation were assessed on crop yields and soil properties for 10 years together with fertilizer application. Horsegram biomass ranging from 3.03–4.28 t ha?1 year?1 (fresh weight) was produced and incorporated in situ under different levels of fertilizer application. Annual incorporation improved the soil properties and fertility status of the soil, which resulted in improved yields of test crops. With biomass incorporation, mean organic carbon content improved by 24% over fallow. Microbial biomass carbon improved by 28% at site I. Long‐term biomass incorporation and fertilizer application resulted in the build‐up of soil nutrients compared with the fallow plots. Application of N and P alone resulted in a negative balance of soil K. A time‐scale analysis of yields showed that incorporation together with fertilizer application maintained a stable yield trend over a 10‐year period in sorghum, whereas fertilizer application alone showed a declining trend. At the end of 10 years of incorporation, the increase in grain yield because of incorporation was 28 and 18%, respectively, in sorghum and sunflower over fallow when no fertilizers were applied to rainy season crops. The incorporation effect was even larger in plots receiving fertilizer. The growing and incorporation of a post‐rainy season legume crop is a low‐cost simple practice that even small and marginal farmers can adopt in semi‐arid regions of the country. Widespread adoption of this practice, at least in alternate years, can restore the productivity of degraded soils and improve crop yields.  相似文献   
8.
An examination was made of the effects of p-aminophenol (PAP) treatment individually and in combination with its parent compound, p-nitrophenol (PNP), on growth and metabolic activities of a microalga, Chlorella vulgaris, and two cyanobacteria, Nostoc linckia and Nostoc muscorum, all isolated from soil. Comparatively, the cyanobacteria were more sensitive to the phenol treatments. All but the lowest (2 μg ml−1) PAP treatments inhibited cell number, chlorophyll a, and total carbohydrate production, 14CO2 uptake, and nitrate reductase and nitrogenase activity. The algistatic effect in C. vulgaris caused by PAP could not be reverted even in the presence of acetate (0.1%). However, the inherent toxic effect of PNP established toward the alga and cyanobacteria was found alleviated in the presence of PAP only at lower concentrations. Transmission electron microscopy revealed many cytological abnormalities in Chlorella vulgaris under the influence of the selected phenols, indicating that the toxicants directly interfere with membrane properties and enzymes.  相似文献   
9.
Detection of crop stress is one of the major applications of hyperspectral remote sensing in agriculture. Many studies have demonstrated the capability of remote sensing techniques for detection of nutrient stress on cotton with only few on pest damage but none so far on leafhopper (LH) severity. Subsequent to introduction of Bt cotton, leafhopper is emerging as a key pest in several countries. In view of its wide host range, geographical distribution and damage potential, a study was initiated to characterise leafhopper stress on cotton, identify sensitive bands, and derive hyperspectral vegetation indices specific to this pest. Cotton plants with varying levels of LH severity were selected from three locations across major cotton growing regions of India. About 57-58 cotton plants from each location exhibiting different levels of LH damage symptoms were selected. Reflectance measurements in the spectral range of 350-2500 nm were made using hyperspectral radiometer. Simultaneously chlorophyll (Chl) and relative water content (RWC) were also estimated from the selected plants. Reflectance from healthy and leafhopper infested plants showed a significant difference in VIS and NIR regions. Decrease in Chl a pigment was more significant than Chl b in the infested plants and the ratio of Chl a/b showed a decreasing trend with increase in LH severity. Regression analysis revealed a significant linear relation between LH severity and Chl (R2 = 0.505∗∗), and a similar fit was also observed for RWC (R2 = 0.402∗∗). Plotting linear intensity curves between reflectance at each waveband with infestation grade resulted in six sensitive bands that exhibited maximum correlation at different regions of the electromagnetic spectrum (376, 496, 691, 761, 1124 and 1457 nm). Regression analysis of several ratio indices formulated with two or more of these sensitive bands led to the identification of new leaf hopper indices (LHI) with a potential to detect leafhopper severity. These new indices along with 20 other stress related hyperspectral indices compiled from literature were further tested for their ability to detect LH severity. Two novel indices LHI 2 and LHI 4 proposed in this study showed significantly high coefficients of determination across locations (R2 range 0.521 to 0.825∗∗) and hence have the potential use for detection of leafhopper severity in cotton.  相似文献   
10.
Soil organic carbon (SOC) pools are important for maintaining soil productivity and reducing the net CO2 loading of the atmosphere. An 18‐year old long‐term field experiment involving pearl millet‐cluster bean‐castor sequence was conducted on an Entisol in western India to examine the effects of chemical fertilizers and manuring on carbon pools in relation to crop productivity and C sequestration. The data showed that even the addition of 33.5 Mg ha−1 C inputs through crop residues as well as farm yard manure could not compensate the SOC depletion by oxidation and resulted in the net loss of 4.4 Mg C ha−1 in 18 years. The loss of SOC stock in the control was 12 Mg C ha−1. Conjunctive use of chemical fertilizers along with farm yard manure produced higher agronomic yields and reduced the rate of SOC depletion. The higher average seed yields of pearl millet (809 kg ha−1), cluster bean (576), and castor (827) over six cropping seasons were obtained through integrated use of fertilizers and manure. For every Mg increase in profile SOC stock, there was an overall increase of 0.46 Mg of crop yield, comprising increase in individual yield of pearl millet (0.17 Mg ha−1 y−1 Mg−1 SOC), cluster bean (0.14) and castor (0.15). The magnitude of SOC build up was proportional to the C inputs. Carbon pools were significantly correlated with SOC, which increased with application of organic amendments. Threshold C input of 3.3 Mg C ha−1 y−1 was needed to maintain the SOC stock even at the low antecedent level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号