首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   5篇
林业   36篇
农学   10篇
  28篇
综合类   11篇
农作物   12篇
水产渔业   19篇
畜牧兽医   105篇
园艺   1篇
植物保护   5篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   12篇
  2012年   11篇
  2011年   16篇
  2010年   4篇
  2009年   12篇
  2008年   13篇
  2007年   11篇
  2006年   13篇
  2005年   24篇
  2004年   17篇
  2003年   16篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   3篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1978年   2篇
  1977年   3篇
  1972年   1篇
排序方式: 共有227条查询结果,搜索用时 156 毫秒
1.
2.
3.
This study investigated the relationship between the initial shape of the stress (σ)-strain (ε) curve of a Chamaecyparis obtusa wood specimen subjected to repeated combined compression and vibration stresses at various angles between the fiber direction and load direction and the piezoelectric behavior. The main findings of the study are: (1) the σ-ε curve became convex initially, and then the stress was proportional to the strain. The σ-ε curve had almost the same shape during both loading and unloading. (2) The σ-piezoelectric voltage (P) curve was nonlinear, with a maximal point or cusp on the curve, which had almost the same shape during both loading and unloading, as was also observed for the σ-ε curve. (3) The plot of the first derivative of the stress [/ (= σ′)] against ε was nonlinear. The σ′-ε and P-ε curves at various angles were fairly similar. (4) The stress at the maximal point (or cusp) of the σ-P curve decreased with an increase in the angle between the fiber direction and load direction. The tendency of the stresses was very similar to that of Young’s modulus and compression strength calculated from Hook’s law and Hankinson’s law, respectively.  相似文献   
4.
The individual growth of tree diameter at breast height (dbh) is analyzed in an even-aged plantation of Cryptomeria japonica from stand age of 45 to 94 years, to examine how the growth of individual trees has been affected by the changes in spacing resulting from thinning operations. At any age, a significant proportion (0.37–0.46) of the variation in dbh growth during a 5–11-year period was explained by dbh at the beginning of the period, probably due to greater leaf mass of larger trees. Next, either one-sided or two-sided competition was added to the model, by calculating the basal area (BA) of neighboring trees around each tree within a given radius or BA for trees having larger dbh than the focal tree within the radius. After preliminary analyses, a radius of 8 m was selected as the critical range for tree competition. Although both types of competition explained a significant proportion (0.09–0.43) of growth variation, one-sided competition was not significant at ages greater than 54 years. Based on the model at 45 years of age, the initial deviation of growth rate for each tree from the predicted rate was calculated and added to the models as a third variable. This raised the coefficient of determination up to 0.50–0.74. These findings have practical significance for forest plantation management, particularly for controlling the growth of standing trees via thinning, to produce high-quality timber in the future.  相似文献   
5.
6.
The effects of grain angle, thickness of face veneer, and shelling ratio on dynamic modulus of elasticity (E) of veneer-overlaid particleboard composite (VOP) were examined by using nondestructive test. In this study, the possibility that E of VOP can be predicted by means of some empirical formula was also discussed. This study has shown that grain angle, thickness of face veneer, and shelling ratio have substantial effects on E of VOP. The E at 0° of grain angle of face veneer was the largest, decreasing rapidly with increase in the grain angle. The lowest value of E occurred at 90° of grain angle of face veneer. The relationship between grain angle of face veneer and E of VOP can be expressed in the form of Jenkin’s and Hankinson’s equations. The orthotropic properties of wood and VOP defined as the ratio E 0/ E 90 were 25.7 for wood and 4.7 for VOP. When the grain direction of face veneer was parallel to the length of the specimens, the E of VOP increased with increasing shelling ratio. VOP increased E from 125 to 179% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. However, when the grain direction of face veneer was perpendicular to the length of the specimens, the E of VOP decreased with increasing shelling ratio. VOP decreased E from 23 to 41% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. The relationship between E of VOP and face veneer thickness can be expressed in the form of a second-order parabolic equation. Rule of Mixture (ROM) can be used to predict E of VOP from the E of wood element and particleboard element.  相似文献   
7.
This study investigated the relationship between the cellulose crystal lattice strain (crystalline region) and the macroscopic surface strain in specimens of Chamaecyparis obtusa wood under repeated uniaxial tension stress in the fiber direction. Changes in the strain of the crystal lattice were measured from the peak of (004) reflection using the transit X-ray method. The macroscopic surface strain of each specimen was measured with a strain gauge. In both loading and unloading, the surface strain changed linearly with changes in stress. However, crystal lattice strain was not linear but exhibited changes along a curve with changing stress. Under stressed conditions, the crystal lattice strain was always less than the surface strain, regardless of the frequency of repetition in the loading and unloading cycle. The ratio of the crystal lattice strain to the surface strain showed a negative correlation for stress in both loading and unloading. That is, the ratio decreased with increasing stress, and finally tend to converge to a specific value. The ratio (I/I 0) between the diffracted intensity (I 0) in the (004) plane in the unloaded condition and the diffracted intensity (I) in the (004) plane in the loaded condition tend to converge on a specific value with increasing frequency of repetition. When the substantial tension Young’s modulus of the wood in the longitudinal direction decreased, the ratio of the strain of the crystal lattice to the surface strain also decreased. Moreover, the ratio decreased with increasing microfibril angle of the specimen.  相似文献   
8.
Foam stability is an important quality trait of beer. Our previous results of two-dimensional gel electrophoresis (2DE) analyses of beer proteins implied a relationship between barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and beer foam stability as judged by the NIBEM-T analyzer. To develop a novel prediction method of beer foam stability under different conditions of barley cultivar and malt modification, multiple linear regression analysis was applied. The spot intensities of major beer proteins on 2DE gel were quantified and used as explanatory variables. The foam stabilities of 25 beer samples each brewed from malt with different malt modification in one of the three cultivars (cultivars A, B, and C) were explained by the spot intensities of BDAI-1 at the 5% significance level ( r = 0.421). Furthermore, two other major protein spots (b0 and b5) were observed on the 2DE gels of Japanese commercial beer samples with different foam stability. Then, multiple regression for foam stability was calculated using these three spot intensities as explanatory variables. As a result, 72.1% of the beer foam stability in 25 beer samples was explained by a novel multiple regression equation calculated using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. To verify the validity of the multiple regression equation and the explanatory variables, the beer foam stability in practical beer samples was analyzed. As a result, 81.5% of the beer foam stability in 10 Japanese commercial beer samples was also explained by using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. Mass spectrometry analyses followed by database searches revealed that protein spots b0 and b5 were identified as protein Z originated from barley and thioredoxin originated from yeast, respectively. These results confirm that BDAI-1 and protein Z are foam-positive factors and identify yeast thioredoxin as a possible novel foam-negative factor.  相似文献   
9.
Photoperiod sensitivity is an important trait related to crop adaptation and ecological breeding in common buckwheat (Fagopyrum esculentum Moench). Although photoperiod sensitivity in this species is thought to be controlled by quantitative trait loci (QTLs), no genes or regions related to photoperiod sensitivity had been identified until now. Here, we identified QTLs controlling photoperiod sensitivity by QTL analysis in a segregating F4 population (n = 100) derived from a cross of two autogamous lines, 02AL113(Kyukei SC2)LH.self and C0408-0 RP. The F4 progenies were genotyped with three markers for photoperiod-sensitivity candidate genes, which were identified based on homology to photoperiod-sensitivity genes in Arabidopsis and 76 expressed sequence tag markers. Among the three photoperiod-sensitivity candidate genes (FeCCA1, FeELF3 and FeCOL3) identified in common buckwheat, FeELF3 was associated with photoperiod sensitivity. Two EST regions, Fest_L0606_4 and Fest_L0337_6, were associated with photoperiod sensitivity and explained 20.0% and 14.2% of the phenotypic variation, respectively. For both EST regions, the allele from 02AL113(Kyukei SC2)LH.self led to early flowering. An epistatic interaction was also confirmed between Fest_L0606_4 and Fest_L0337_6. These results demonstrate that photoperiod sensitivity in common buckwheat is controlled by a pathway consisting of photoperiod-sensitivity candidate genes as well as multiple gene action.  相似文献   
10.
In order to understand the kraft pulp decolouring mechanism on using a nonionic detergent, the pulp washing process and the resulting pulp handsheets were investigated by examining the brightness, kappa number, thioacidolysis product yield, and dewatering efficiency in the pressing sheet making process. The pulp decolouring could be attributed to a decrease in the lignin content and an improvement in the dewatering efficiency. Furthermore, the detergent distribution in the aqueous pulp suspension obtained during the pulp washing process was visualised using cryo-time-of-flight secondary ion mass spectrometry/scanning electron microscopy (cryo-TOF-SIMS/SEM). The detergent was clearly observed at the transverse surface of the pulp fibre cell wall and was also detected in the lumen of the fibres, suggesting the permeation of the detergent into the pulp fibre cell wall. Based on these results, the pulp decolouring mechanism can be proposed as follows: the detergent permeates into the pulp fibre cell wall and promotes the solution-exchange between the inside and the outside parts of the fibre cell wall, finally washing away the chromophoric substances such as lignin and its degradation products owing to the enhanced dewatering efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号