首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
林业   1篇
基础科学   3篇
  1篇
综合类   3篇
  2023年   3篇
  2022年   1篇
  2017年   1篇
  2015年   3篇
排序方式: 共有8条查询结果,搜索用时 17 毫秒
1
1.
基于机载LiDAR点云估测林分的平均树高   总被引:1,自引:0,他引:1  
以内蒙古上库力农场为研究区,基于高程归一化后的植被点云数据计算了植被点云高度阈值平均值,建立林分平均树高线性回归模型,并进行精度评定。结果表明,模型估测平均树高精度最高为99.81%,最低为87.09%,总体平均精度为94.56%。利用植被点云高度阈值平均值估测林分平均树高具有较高的可靠性。  相似文献   
2.
森林冠层的三维重建研究能够更加直观反映森林空间结构,提高森林参数的测量精度。目前小光斑激光雷达已经广泛应用于林业研究中。为建立落叶松树冠三维形状模型,以长春净月潭实验区落叶松机载LiDAR(LiDAR,Light Detection And Ranging)数据为基础,采用K-means算法提取建模参数。该算法以单木树冠顶点作为初始聚类中心,经过4次迭代估测出单木树高和单木树冠直径,通过与试验区的单木实测数据对比,进行相关性分析,得到估测树高和估测树冠与实测数据相关系数分别为0.892 4和0.769 0,经过验证,估测树高和估测树冠的精度为94.06%和82.21%。利用激光雷达提取出的单木坐标、树高、树冠和冠基高采用旋转抛物线方法重建森林尺度三维模型呈现森林结构。  相似文献   
3.
随着激光雷达技术的发展,近几年对小光斑全波形激光雷达数据处理方法及其应用的研究已成为国内外相关领域关注的热点。文中阐述小光斑全波形激光雷达的组成及数据特点,介绍波形数据的处理流程,并在此基础上概述小光斑全波形激光雷达波形数据在林业中的应用;基于国内外研究现状,详细论述了波形分解和提取森林结构参数的理论及方法,分析了小光斑全波形激光雷达波形数据处理的局限性及其在林业中的应用前景。  相似文献   
4.
选择地处草原和森林过渡地带的上库力农场作为研究区(E120°36'50.48″~120°52'56.53″,N50°21'11.08″~50°24'32″),由机载激光雷达Leica ALS60采集实验数据,对Terra Solid分类获取的地形点建立数字高程模型(DEM);利用IDL编译一次样条有限元内插法对点云数据进行分块处理,分析生产DEM的精度。结果表明:1.0、1.5、2.0 m三种不同分辨率的DEM精度,分别为0.034、0.078、0.096 m。  相似文献   
5.
浸种是玉米生产中重要的播前增种技术,对浸种过程中裂纹的高效检测是分析玉米胚乳裂纹变化规律的基础,是优良品种性状选育的关键之一,尚存在内部胚乳裂纹不可见、自动化检测程度不高等困难。基于CT扫描技术,在YOLO v5n检测网络的基础上,设计了YOLO v5-OBB旋转目标检测网络,其中OBB为有向目标边框,该网络使用旋转矩形框代替普通矩形框,并在Backbone部分加入位置注意力模块(CA),同时采用倾斜非极大值抑制算法(Skew-NMS)进行非极大值抑制得到最终预测框,以此实现长宽比大、方向不一的玉米胚乳裂纹检测。经过300次迭代训练,模型在测试集上的精确率P为94.2%,召回率R为81.7%,平均精度(AP)为88.2%,模型内存占用量为4.21 MB,单幅图像平均检测时间为0.01 s,与SASM、S2A-Net和ReDet旋转目标检测网络相比,AP分别提高15.0、16.9、7.0个百分点,单幅图像平均检测时间分别减少0.19、0.22、0.46 s,同时YOLO v5-OBB模型内存占用量分别为SASM、S2A-Net和ReDet模型的...  相似文献   
6.
肉牛目标检测和数量统计是精细化、自动化、智能化肉牛养殖要解决的关键问题,受肉牛个体颜色及纹理相近和遮挡等因素的影响,现有肉牛目标检测方法实用性较差。本研究基于YOLO v5s网络与通道信息注意力模块(ECABasicBlock),提出了一种融合通道信息的改进YOLO v5s网络(ECA-YOLO v5s),在YOLO v5s模型的骨干特征提取网络部分添加了3层通道信息注意力模块。ECA-YOLO v5s网络实现了重度遮挡环境下多目标肉牛的准确识别。对养殖场监控视频分帧得到的肉牛图像采用了一种基于结构相似性的冗余图像剔除方法以保证数据集质量。数据集制作完成后经过300次迭代训练,得到模型的精确率为89.8%,召回率为76.9%,全类平均精度均值为85.3%,检测速度为76.9 f/s,模型内存占用量为24 MB。与YOLO v5s模型相比,ECA-YOLO v5s的精确率、召回率和平均精度均值分别比YOLO v5s高1.0、0.8、2.2个百分点。为了验证不同注意力机制应用于YOLO v5s的性能差异,本研究对比了CBAM(Convolutional block attention mo...  相似文献   
7.
为解决牛场人工推翻饲料劳动强度大、工作时间长等问题,设计了一种基于激光雷达同步定位与建图(Simultaneous localization and mapping, SLAM)的牛场智能推翻草机器人自主导航系统,以期实现机器人在牛场环境中自主导航完成推翻草任务。自主导航系统通过激光雷达感知牛场环境,使用加载里程计信息的Cartographer算法构建牛场环境地图,采用未加载里程计信息的自适应蒙特卡洛定位(Adaptive Monte Carlo localization, AMCL)算法实现机器人的定位,并采用迪杰斯特拉算法(Dijkstra)规划机器人推翻草工作路径。试验表明,在构建牛场环境地图时采用机器人加载里程计信息的方式,横纵向偏差最大值低于未加载里程计信息时构建的地图,分别为0.02 m和0.14 m;在实现机器人的定位与导航时采用未加载里程计信息的方式,横纵向偏差最大值及航向偏角最大值分别小于0.04 m、0.10 m和11°,且导航精度高于加载里程计信息时的数值,满足牛场环境中推翻草作业时的导航精度要求。  相似文献   
8.
基于ResNeXt单目深度估计的幼苗植株高度测量方法   总被引:2,自引:2,他引:0       下载免费PDF全文
幼苗高度是幼苗培育过程中的重要性状,是幼苗生长状况和优良性状筛选的重要参考指标。针对目前研究多选用专业测量工具、使用带有标记的测量手段这一问题,该研究提出了一种基于单目图像深度估计技术的幼苗高度无参测量方法。首先以NYU Depth Dataset V2深度数据集为基础,以ResNeXt 101网络为深度估计网络主体实现植株图像深度估计。通过深度信息计算出拍摄点到植株的真实距离,结合图像中幼苗植株的像素高度和标定好的视场角实现幼苗高度的测量。为验证该方法的有效性,通过采集不同距离下的番茄幼苗图像1728幅,辣椒幼苗图像160幅,甘蓝幼苗160图像幅进行植株高度测量试验。试验结果表明,在拍摄距离为1.05 m内番茄幼苗平均绝对误差(Mean Absolute Error,MAE)为0.569 cm,均方根误差(Root Mean Square Error,RMSE)为0.829 cm,平均植株高度比例为1.005。辣椒,甘蓝幼苗的MAE为0.616和0.326 cm,RMSE为0.672和0.389 cm。每株幼苗高度的平均计算时间为2.01 s。试验结果表明该方法具有较好的可行性和普适性。不同光照强度下植株高度测量结果表明,在感光度小于160时,植株高度测试结果的MAE为0.81 cm,仍具有较好的测量准确度。当单幅图像中植株个数处于5以内时,MAE和RMSE的平均值分别为1.001、0.652 cm和0.829 cm。研究结果表明,该模型可以较准确地从单幅图像中检测出多株植株高度,且在不同距离和一定光照强度变化内均可完成多种幼苗植株高度的精确测量。可为幼苗培育和成长时期判断等研究提供一种无损的植株高度测量方法。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号