首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
农学   4篇
  2篇
综合类   2篇
农作物   2篇
植物保护   3篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2011年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1990年   1篇
  1975年   2篇
  1968年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Bentazon, 3-isopropyl-2,1,3-benzothiadiazin-4-one-2,2-dioxide is effective for weed control in flooded rice fields not only as a foliar treatment but also as a flooded-water or paddy soil treatment. Generally the herbicidal effect develops slowly only after translocation of the herbicide has occurred, but when the weeds contacted directly with relatively high concentrations of the herbicide, the effects appear rather rapid.The slow herbicidal effect appears to be an important mode of action of bentazon applied practically on weeds under flooded rice field conditions. The slow effect may be caused by inhibition of photosynthesis as supported by the following experimental results: a) Bentazon inhibited the Hill reaction in isolated chloroplasts; b) bentazon rapidly inhibited photosynthetic CO2 fixation in susceptible Cyperus serotinus and other plants; c) the herbicidal effects appeared much slower when bentazon was applied as a flooded-water treatment; d) bentazon injury was prevented by endogenous or exogenously supplied carbohydrates.  相似文献   
2.
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.  相似文献   
3.
Propanil hydrolysis: inhibition in rice plants by insecticides   总被引:2,自引:0,他引:2  
Hydrolysis of the herbicide propanil (3', 4'-dichloropropionanilide) by rice plants is inhibited by insecticides. The inhibitory activity of an organophosphate such as paraoxon in vivo and in vitro is significantly stronger than that of an organothiophosphate such as parathion. The injury to rice plants by insecticides sprayed on them with propanil seems to be caused by the inhibition of the propanil detoxifying enzyme.  相似文献   
4.
The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9–9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that ‘Purple Straw’ and ‘Tohoku 118’ were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.  相似文献   
5.
A field trial was conducted over a 3-year period at the Hokkaido Kitami Agricultural Experiment Station to examine whether the grain protein content (GPC) of a winter wheat cultivar (Triticum aestivum L. cv. Chihokukomugi) suitable for Japanese noodle-making could be predicted before harvest. The prediction of the GPC was accurate based on the color of the second leaf (just below the flag leaf) at the end of the emergence of the inflorescence, when nitrogen application was graded. In order to evaluate the reliability of this test, a survey of 95 wheat fields in the eastern part of Hokkaido was also carried out during a 3-year period. The prediction of the GPC for this cultivar based on the color of the second leaf was less accurate across many sites. The results of this survey, however, suggested that the leaf color could be used as an index for ranking the GPC as low or high in relation to processing requirements. When the leaf color value of the second leaf measured with a chlorophyll meter at the end of the emergence of the inflorescence was less than 40, it was predicted that the GPC would be lower than the processing requirement. This index could be applied to the cultivars grown in the eastern part of Hokkaido, except for those grown on peat soils.  相似文献   
6.
Development of wheat cultivars that achieve high yields despite the short growing season is essential for increasing wheat production in southwestern Japan. The objectives of this study were to assess the genetic progress in grain yield and to clarify yield-attributing traits of high-yielding wheat lines in southwestern Japan. We conducted field experiments for two growing seasons (2012–2013 and 2013–2014) using three commercial wheat cultivars (Shiroganekomugi, Chikugoizumi, and Iwainodaichi) and four high-yielding wheat lines including Hakei W1380 developed in southwestern Japan. In an ancillary field experiment, we compared a commercial cultivar, Shiroganekomugi, and a high-yielding line, Hakei W1380, in the 2014–2015 season. Across the two seasons, grain yield of high-yielding lines was generally higher than commercial cultivars. Hakei W1380 achieved the highest grain yield across the two seasons, and successfully produced more than 900 g m?2 in the 2013–2014 season. Correlation analysis showed that recent yield progress of wheat lines in southwestern Japan was derived from enhanced biomass production and grain number m?2. Larger numbers of grains m?2 in high-yielding lines than in commercial cultivars were associated with higher crop growth rate at the pre-anthesis stage, and therefore higher spike dry weight m?2 at anthesis. Genotypic differences in crop growth rate from jointing to anthesis resulted mainly from differences in leaf area index. These results indicate that further improvements in grain yield in southwestern Japan could be achieved by increasing the amount of radiation intercepted at the pre-anthesis stage and grain number m?2.  相似文献   
7.
ABSTRACT

Wheat (Triticum aestivum L.) grain yield is predicted to decrease in the future because of an increase in air temperature globally. To clarify the effects of the vernalization response gene in wheat to warmer winters, we compared dry matter production and grain yield between spring wheat ‘Asakazekomugi’ and its winter-type near-isogenic line (NIL) carrying different alleles of the vernalization response gene Vrn-D1 under early-, standard-, and late-sowing conditions. Under early-sowing conditions, dry matter production of the NIL carrying the winter allele of Vrn-D1, named Asa (Vrn-D1b), exceeded that of ‘Asakazekomugi’ from mid-March (after stem elongation in Asa (Vrn-D1b)) when the temperatures rose. Tiller number and leaf area index under early-sowing conditions were consistently higher in Asa (Vrn-D1b) than in ‘Asakazekomugi’ from mid-March onward. It was suggested that the early-sown ‘Asakazekomugi’ could not effectively absorb solar radiation to produce dry matter because of the acceleration of stem elongation caused by the Vrn-D1 gene during the cold season. The grain yield of Asa (Vrn-D1b) with early sowing was higher than with standard sowing. In contrast, the grain yield of ‘Asakazekomugi’ was lower in the early-sown crop than in the crop sown at the standard date. These results suggested that the higher grain yield of Asa (Vrn-D1b) than that of ‘Asakazekomugi’ under early-sown conditions could be due to Asa (Vrn-D1b) maintaining high dry matter production after the jointing stage by suppressing acceleration of growth caused by warm conditions after sowing.  相似文献   
8.
The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from ‘Shiroboro 21’ by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.  相似文献   
9.
Native starch from waxy mutant wheat Tanikei A6599‐4 is known to exhibit more stable hot paste viscosity than a typical waxy wheat (Tanikei H1881) and waxy corn. The objective of this study was to investigate the starch paste properties of Tanikei A6599‐4 after cross‐linking and compare with Tanikei H1881 and waxy corn. As an example of cross‐linking, the reaction (at 30, 60, 120, and 360 min) with sodium trimetaphosphate was used. In Rapid Visco Analyser (RVA) measurement, the unique characteristic was maintained in Tanikei A6599‐4 starch cross‐linked at low reaction time (<120 min) levels. Cross‐linking at a high reaction time (360 min) level suppressed the swelling of both Tanikei A6599‐4 and Tanikei H1881 starches but not waxy corn starch. Although unmodified Tanikei A6599‐4 starch showed the lowest paste clarity among unmodified waxy starches, this defect became unremarkable when starch was cross‐linked for ≥120 min. In gel‐dispersed dynamic viscoelasticity measurement, the order of G′ and G″ values was always Tanikei A6599‐4 > Tanikei H1881 > waxy corn. This indicates that cross‐linked Tanikei A6599‐4 and Tanikei H1881 starches have different starch properties and that swollen Tanikei A6599‐4 starch granules are more rigid than swollen Tanikei H1881 starch granules.  相似文献   
10.
Absorption, translocation and metabolism of [14C]3-isopropyl-2,1,3-benzothiadiazin-4-one-2,2-dioxide (bentazon) by several plant species were investigated to determine the mechanism of bentazon selectivity.Marked selective phytotoxicities were observed between resistant rice (Oryza sativa L.) and susceptible Cyperus serotinus Rottb. when treated with bentazon. Absorption and transolcation of bentazon did not differ greatly between highly resistant rice and susceptible C. serotinus. However, a marked difference in bentazon metabolism occurred between the two species. In rice about 80% of the absorbed bentazon was metabolized within 24 h, and after 7 days about 85% was converted to a major water-soluble metabolite and unchanged bentazon was only 5%. In C. serotinus 50–75% of the radioactivity was unchanged bentazon after 7 days.Large amounts of water-soluble metabolites were detected in root-treated resistant plants such as barnyardgrass (Echinochloa crus-galli Beauv.), soybean (Glycine max Merr.) and corn (Zea mays L.), but only small amounts were present in such susceptible plants as Sagittaria pygmaea Miq. and Eleocharis kuroguwai Ohwi. Therefore, the mechanism of bentazon selectivity appears to be a difference between resistant and susceptible species in their ability to metabolize and detoxify bentazon.The major metabolite in rice was identified as 6-(3-isopropyl-2,1,3-benzothiadiazin-4-one-2,2-dioxide)-O-β-glucopyranoside, determined by GC-MS, NMR, IR and gas chromatography after hydrolysis with sulfuric acid or β-glucosidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号