首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
植物保护   6篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
The fungal genus Alternaria comprises a large number of asexual taxa with diverse ecological, morphological and biological modes ranging from saprophytes to plant pathogens. Understanding the speciation processes affecting asexual fungi is important for estimating biological diversity, which in turn affects plant disease management and quarantine enforcement. This study included 106 isolates of Alternaria representing five phylogenetically defined clades in two sister sub‐generic groups: section Porri (A. dauci, A. solani and A. limicola) and section Alternaria (A. alternata/tenuissima and A. arborescens). Species in section Porri are host‐specific while species in section Alternaria have wider host ranges. For each isolate, DNA sequences of three genes (Alt a1, ATPase, Calmodulin) were used to estimate phylogenies at the population and species levels. Three multilocus haplotypes were distinguished among A. dauci isolates and only one haplotype among A. solani and A. limicola isolates, revealing low or no differentiation within each taxon and strong clonal structure for taxa in this section. In contrast, 37 multilocus haplotypes were found among A. alternata/tenuissima isolates and 21 multilocus haplotypes among A. arborescens isolates, revealing much higher genotypic diversity and multiple clonal lineages within taxa, which is not typical of asexual reproducing lineages. A species tree was inferred using a Yule Speciation model and a strict molecular clock assumption. Species boundaries were well defined within section Porri. However, species boundaries within section Alternaria were only partially resolved with no well‐defined species boundaries, possibly due to incomplete lineage sorting. Significant association with host specificity seems a driving force for speciation.  相似文献   
2.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   
3.
Journal of Plant Diseases and Protection - Monilinia fructicola, causal agent of brown rot of stone fruits, is an economically important problem worldwide. Six of the sequence tagged microsatellite...  相似文献   
4.
The Fertile Crescent is the centre of domestication of chickpea (Cicer arietinum) and also the place of origin of its pathogens. Agrosystems provide different environments to natural eco‐systems, thus imposing different types of selection on pathogens. Here, the genetic structure and in vitro temperature growth response of the chickpea pathogen Didymella rabiei from domesticated chickpea (59 isolates from Turkey and 31 from Israel) and wild Cicer spp. (three isolates from Turkish C. pinnatifidum and 35 from Israeli C. judaicum) were studied. Six sequence‐tagged microsatellite site (STMS) primer pairs were used to determine the genetic structure of the 128 D. rabiei isolates. Turkish isolates exhibited the highest genetic diversity (H = 0·69). Turkish and Israeli D. rabiei from domesticated chickpea were genetically closer to each other than isolates from the wild Cicer spp. Analysis of molecular variance showed that 54% of the genetic variation resided between isolates from wild and domesticated origins. EF1‐α sequences distinguished between D. rabiei isolates from domesticated and wild Cicer spp. by four polymorphic sites. Nevertheless, a certain degree of mixing between isolates from wild and domesticated origin was demonstrated using the Bayesian algorithm as well as with principal coordinates analysis. Isolates sampled from domesticated chickpea from both countries were better adapted to temperatures typical of Levantine spring and had a significantly larger colony area at 25°C than at 15°C (typical Levantine winter temperature). These observations were in accordance to the heritability values of the temperature growth response.  相似文献   
5.
Didymella fabae is a highly destructive fungal pathogen of faba bean (Vicia faba) that represents a significant yield‐limiting biotic constraint in all locations where the crop is grown. However, nothing is known about the population structure of this pathogen anywhere in the world. Population genetic analyses employing 18 sequence‐tagged microsatellite (STMS) markers covering eight genetic linkage groups and a PCR‐based mating type marker were used to elucidate the genetic structure and reproductive mode of the pathogen in three populations in Syria. High gene diversity within populations but low genetic differentiation among populations was observed and the entire collection of isolates was assigned to a single genetic population using a Bayesian clustering algorithm. Independent analyses were performed based on four unlinked sets of STMS markers to infer reproductive mode. A simulation approach was used to estimate which of the repeated multilocus genotypes were probably the result of asexual reproduction and should be clone‐corrected. A 1:1 ratio of mating types could not be rejected in any clone‐corrected population, probably due to small sample sizes. Likewise, frequency of clones and sample size, but not marker linkage, had strong effects on multilocus gametic disequilibrium. The null hypothesis of random mating was rejected in the majority of populations for both non‐clone‐corrected and clone‐corrected samples and with four sets of unlinked markers indicating a predominance of asexual reproduction in these populations. This represents the first detailed screening of clonal and genetic composition of D. fabae populations in Syria.  相似文献   
6.
Ascochyta blight, caused by Didymella rabiei, affects both domesticated chickpea and its congeneric wild relatives. The aim of this study was to compare the aggressiveness of D. rabiei isolates from wild and domesticated Cicer spp. in Turkey and Israel on wild and domesticated hosts from both countries. A total of eight isolates of D. rabiei sampled from C. pinnatifidum, C. judaicum and C. arietinum in Turkey and Israel was tested on two domesticated chickpea cultivars and two wild Cicer accessions from Turkey and Israel. Using cross-inoculation experiments, we compared pathogen aggressiveness across the different pathogen and host origin combinations. Two measures of aggressiveness were used, incubation period and relative area under the disease progress curve. The eight tested isolates infected all of the host plants, but were more aggressive on their original hosts with one exception; Turkish domesticated isolates were less aggressive on their domesticated host in comparison to the aggressiveness of Israeli domesticated isolates on Turkish domesticated chickpea. C. judaicum plants were highly resistant against all of the isolates from different origins except for their own isolates. Regardless of the country of origin, the wild isolates were highly aggressive on domesticated chickpea while the domesticated isolates were less aggressive on the wild hosts compared with the wild isolates. These results suggest that the aggressiveness pattern of D. rabiei on different hosts could have been shaped by adaptation to the distinct ecological niches of wild vs. domesticated chickpea.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号