首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
农学   3篇
  2篇
农作物   4篇
水产渔业   1篇
植物保护   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2009年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.

Lack of control options for cool-season broadleaf weeds is a major deterrent to autumn-sown chickpea. Weed control and chickpea tolerance to PRE (pre-emergence) and POST (post-emergence) application of isoxaflutole and oxyflurofen, PRE metribuzin, POST pyridate, and flumetsulam were investigated at three locations, including Kermanshah, Kurdistan, and Hamedan provinces during 2017–2018. Untreated and weed-free checks were added for comparison. Pyridate and PRE oxyflurofen 125?g ai ha?1 caused the minor visual crop injury according to EWRS score (1–1.8), while the highest crop injury occurred with metribuzin (EWRS score 3.5–8.5) in whole locations. The most effective herbicides for weed reduction were pyridate (70–75%), PRE oxyfluorfen (69–76%), and POST oxyfluorfen (65–73%) at Kermanshah, PRE oxyfluorfen at 125 and 175?g ai ha?1 (70–78%), POST oxyfluorfen (70–76%) and pyridate (70–78%) at Kurdistan, PRE oxyfluorfen at 125 and 175?g ai ha?1 (88–96%), metribuzin (91–100%) and Pyridate (80–97%) at Hamedan. Pyridate and PRE oxyfluorfen at 125?g ai ha?1 resulted in the highest chickpea grain yield at the three locations. In general, PRE oxyfluorfen (125?g ai ha?1) was similar to pyridate in terms of efficacy in weed control and grain yield enhancement.

  相似文献   
2.
Background:The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends RLS. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods:A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 ScFv expression were compared between the parent and mutant strains.Results:The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively.Conclusion:The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains. Key Words: Aging, Longevity, Pichia pastoris, Recombinant proteins  相似文献   
3.
The effect of soil applied zinc (Zn) sulfate and seed priming with Zn-glutamine [Zn(Gln)2], Zn-glycine [Zn(Gly)2], Zn-arginine [Zn(Arg)2], and Zn-histidine [Zn(His)2] on yield and grain nutritional quality of two bread (Triticum aestivum L. cvs. Back Cross and Kavir) and a durum wheat genotype (Triticum durum L. cv. Durum) was investigated. Seed priming with [Zn(Gly)2] and [Zn(Gln)2] increased grain yield of wheat over soil applied Zn-sulfate treatment by 46 and 14%, respectively. Seed priming with [Zn(Gln)2], [Zn(Arg)2], and [Zn(His)2] significantly increased grain protein content of wheat in comparison with control treatment. Seed priming with [Zn(Arg)2] and [Zn(His)2] resulted in higher Zn and Fe accumulation in wheat grain as compared with the other Zn treatments. Priming seeds with [Zn(Arg)2] reduced phytic acid to Zn molar ratio of wheat grain. Seed priming with [Zn(Arg)2] and [Zn(His)2] might be used as an alternative approach for soil application of Zn-sulfate to overcome Zn deficiency in calcareous soils.  相似文献   
4.
Two diploid sugar beet genotypes of agronomical importance were transformed using Agrobactrium tumefaciens harboring pBI35Scry containing a synthetic cry1Ab gene. Leaf blade with attached shoot bases, a highly regenerative tissue, were used as explant substratum for transformation. PCR screening with cry1Ab-specific primers showed the presence of transgene in more than 50% of the regenerated kanamycin-resistant plants after treatment with the antibiotic. A transformation rate of 8.8–12.2% (depending on genotype) was achieved as revealed by genomic DNA dot blotting. The intact integration of transgene cassette into the genome was furthermore confirmed by Southern blot analysis. The expression of the cry1Ab gene encoding a truncated endotoxin (67 kDa) at about 0.1% of total soluble protein was achieved in the leaves of transgenic plants as shown by Western blot analysis. Bioassays under in vitro conditions with Spodoptera littoralis, one of the most important pests in sugar beet fields, demonstrated enhanced resistance against this pest. The inheritance of the inserted transgene was confirmed in F1 plants obtained through crossing of T0 plants with a cytoplasmic male sterile line. Transgenic plants are currently grown in a greenhouse and will be subjected to further bioassay analyses against other lepidopteran pests of sugar beet.  相似文献   
5.
Plant genotypes with higher drought tolerance through improved root characteristics are poorly studied in orchardgrass. In the current research, 30 orchardgrass genotypes were polycrossed and the resulting half‐sib families evaluated under both normal and water stress environments. Under water stress conditions, values for most root traits decreased at 0–30 cm soil depth, while at 30–60 cm depths, the root length (RL), root area (RA), root volume, percentage of root dry weight (RDW) and the ratio of root to shoot were increased. We identified drought‐tolerant genotypes with a high combining ability for root characteristics and a high yield potential. High estimates of heritability as well as genetic variation for root traits indicated that phenotypic selection would be successful in order to achieve genetic progress. Indirect selection to improve dry matter yield was most efficient when selecting for RL and RDW under water stress conditions. Significant associations between a drought tolerance index and RL, RA and root volume confirmed the importance of these traits in conferring drought tolerance of orchardgrass.  相似文献   
6.
The present study aimed to assess the effect of contrasting levels of molecular and phenotypic diversity among polycross parents of orchardgrass on the performance of synthetic progeny with respect to physiological responses and drought tolerance. Four polycross groups each composed of six parental plants were evaluated under normal irrigation and drought stress conditions. A number of 923 inter simple sequence repeats and sequence related amplified polymorphism markers and several phenotypic traits were used to select contrasting levels of diversity (high and low) in parental genotypes. Highly significant correlation was observed between molecular distance and progeny performances at both normal irrigation and drought stress conditions. High molecular diversity among polycross parents led to a significant yield advantage of first generation progeny with averages of 34.40% for normal irrigation and 48.10% for drought stress conditions. Also crosses between genetically distant parents produced progeny with considerable drought tolerance and yield stability. Positive associations between phenotypic distance of parents and progeny performance were found for most physiological traits at both moisture regimes but phenotypic distances had weak association with forage yield, stress tolerance index and yield stability of progeny. Significant associations between drought tolerance index and some physiological traits confirmed the importance of these traits in conferring drought tolerance of orchardgrass. Our results underscore the effectiveness of marker‐assisted polycross breeding to improve drought tolerance and yield stability through physiological traits in orchardgrass.  相似文献   
7.
Background:Bispecific antibodies represent an important class of mAbs, with great therapeutic potentials due to their ability to target simultaneously two distinct epitopes. The generation of functional bispecific antibodies with the highest possible yields is particularly critical for the production of these compounds on industrial scales. Anti- CD3 × CD19 bsAb is a bispecific T-cell engager (BiTE) currently used for treating ALL. Herein, we have tried to optimize the expression level of this antibody in mammalian hosts. Methods:WPRE sequence was incorporated at the 3’ end of the expression cassette. This modification resulted in a notable about two-fold increase in the expression of the bsAb in the Expi293 cell line. Results & Conclusion:Follow-up flow cytometry analysis demonstrated the binding properties of the produced antibody at acceptable levels, and in vitro bioactivity assays showed that this product is potent enough for targeting and destroying CD19-positive cells. Our findings show that WPRE enhances the expression of this type of bispecific mAbs in HEK-293 family cell lines. This approach can be used in biopharma industry for the mass production of anti-CD3 × CD19 bispecific antibody. Key Words: Acute lymphoblastic leukemia, Bispecific antibodies, Monoclonal antibody  相似文献   
8.
A new species in the genus Ditylenchus, D. stenurus n. sp. collected from western Iran, is described and illustrated herein based on morphological and molecular studies. The new species is characterised by a body length of 772 (663–863) μm, delicate stylet 6 (5–7) μm long, six lines in the lateral field. Median bulb of pharynx well-developed, muscular with crescentic valve. Post-vulval uterine sac well-developed, 35 (30–45) μm long, female tail elongate-conoid, becoming narrow suddenly with finely rounded terminus. The new species comes close in morphology and morphometrics to five known species of the genus, namely D. arachis, D. caudatus, D. clarus, D. myceliophagus, and D. nanus. DNA sequencing data was obtained on the partial 18S, D2/D3 expansion segments of the 28S rRNA gene and internal transcribed spacer (ITS). The phylogenetic relationships of this species with other Ditylenchus spp. using partial 18S–rDNA and D2/D3 indicated that D. stenurus n. sp. clustered together with several species belongs to the D. triformis-group i. e. D. africanus, D. destructor and D. halictus: all sharing a rounded tail terminus and six lines in lateral fields.  相似文献   
9.
The aim of this study was to determine the effects of plant absence or presence on microbial properties and enzyme activities at different levels of salinity in a sandy clay soil. The treatments involved five salinity levels—0.5 (control), 2.5, 5, 7.5, and 10 dS m?1 which were prepared using a mixture of chloride salts—and three soil environments (unplanted soil, and soils planted with either wheat or clover) under greenhouse conditions. Each treatment was replicated three times. At the end of the experiment, soil microbial respiration, substrate-induced respiration (SIR), microbial biomass C (MBC), and enzyme activities were determined after plant harvest. Increasing salinity decreased soil microbial properties and enzyme activities, but increased the metabolic quotient (qCO2) in both unplanted and planted soils. Most microbial properties of planted soils were greater than those of unplanted soils at low to moderate salinity levels, depending upon plant species. There was a small or no difference in soil properties between the unplanted and planted treatments at the highest salinity level, indicating that the indirect effects of plant presence might be less important due to significant reduction of plant growth. The lowered microbial activity and biomass, and enzyme activities were due to the reduction of root activity and biomass in salinized soils. The lower values of qCO2 in planted than unplanted soils support the positive influence of plant root and its exudates on soil microbial activity and biomass in saline soils. Nonetheless, the role of plants in alleviating salinity influence on soil microbial activities decreases at high salinity levels and depends on plant type. In conclusion, cultivation and growing plant in abandoned saline environments with moderate salinity would improve soil microbial properties and functions by reducing salinity effect, in particular planting moderately tolerant crops. This helps to maintain or increase the fertility and quality of abandoned saline soils in arid regions.  相似文献   
10.
Dyeing is a state-of-the-art realm of textile engineering, however, the emphasis on petroleum-based products is now shifting towards green fibers, particularly, green manufacturing processes. In the present work, a natural mordant, sumac, was extracted and used alone and in combination with alum (a mineral mordant) in silk fibers dyeing with madder and Reseda green dye to make the green production of Iranian carpet possible. The FT-IR ATR spectra of the washed, mordanted, and mordanted dyed silk fibers revealed bonding between silk fibers and green materials. The color of the silk fibers dyed with madder and Reseda extraction was quantified in terms of CIELab (L*, a*, and b*) and K/S values. The effects of different treatments on fastness properties including light, wash, and rubbing fastness were assessed by ISO standard test method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号