首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
林业   8篇
农学   13篇
  11篇
综合类   18篇
农作物   7篇
水产渔业   3篇
畜牧兽医   52篇
园艺   1篇
植物保护   27篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1966年   2篇
排序方式: 共有140条查询结果,搜索用时 46 毫秒
1.
2.
An attempt was made to evaluate gluten structural changes in refined and whole wheat pasta from hard white winter wheat to elucidate the impact of whole wheat components on the formation and structure of the gluten network in pasta. Attenuated total reflectance–FTIR spectroscopy was used to track gluten secondary structure through most of the major steps in pasta processing: raw material, mixing, drying, and cooking. Protein solubility, accessible thiols, and SDS‐PAGE data were also collected to provide additional information on the nature of protein interactions and network composition. Few secondary structural differences were observed between refined and whole wheat flours from hard white wheat. However, mixing induced a significant shift to β‐sheet structures in refined dough that was not equally matched by whole wheat dough. Drying under both high temperature, short time (HT) and low temperature, long time (LT) conditions resulted in a reversion to structural distributions similar to those for flour in both pastas. However, greater protein denaturation in HT samples was indicated by lower protein solubility also in the presence of denaturants and disulfide reducing agents. Cooking generated a substantial increase in β‐sheet structures for both pasta systems. This structure was greatest in refined and LT samples. Thiol accessibility data indicate the presence of a highly aggregated, compact gluten network in refined pasta, mostly driven by hydrophobic association. Conversely, the network in whole wheat pasta was more loosely associated and dependent on disulfide bonding, both of which fit well with the secondary structural data.  相似文献   
3.
Rhizoctonia solani Kühn is a serious plant pathogenic fungus, causing various types of damage to sugar beet (Beta vulgaris L.). In Europe, the disease is spreading and becoming a threat for the growing of this crop. Plant resistance seems to be the most practical and economical way to control the disease. Experiments were carried out to optimise a greenhouse procedure to screen plants of sugar beet for resistance to R. solani. In the first experiment, two susceptible accessions were evaluated for root and leaf symptoms, after being grown in seven different soil mixtures and inoculated with R. solani. The fungus infected all plants. It was concluded that leaf symptoms were not reliable for the rating of disease severity. Statistically significant differences between the soil mixtures were observed, and there were no significant differences between the two accessions. The two soil mixtures, showing the most severe disease symptoms, were selected for a second experiment, including both resistant and susceptible accessions. As in the first experiment, root symptoms were recorded using a 1–7 scale, and a significant expression of resistance was observed. The average severity of the disease in the greenhouse experiment generally was comparable with the infection in field experiments, and the ranking of the accessions was the same in the two types of experiments. It was concluded that evaluation procedures in the greenhouse could be used as a rapid assay to screen sugar beet plants for resistance to R. solani.  相似文献   
4.
Jeger  Gilijamse  Bock  & Frinking 《Plant pathology》1998,47(5):544-569
Sorghum downy mildew ( Peronosclerospora sorghi ) infecting sorghum and maize, and pearl millet downy mildew ( Sclerospora graminicola ) infecting pearl millet can cause considerable yield loss in Africa. The last 15 years have witnessed an increase in knowledge of the biology, epidemiology and control of these two pathogens. Much information has been obtained on the effect of environmental factors on disease epidemiology, spore production and dispersal. Molecular techniques applied to study pathogenic variability have aided in defining relationships among these pathogens, although scope of the work is limited. Knowledge of the genetics and inheritance of resistance, and of resistance mechanisms, has also increased. This review presents the current state of knowledge of both downy mildew pathogens, with focus on their status on sorghum and pearl millet in Africa. Despite the advances in knowledge over the last 15 years, these downy mildews remain important constraints to sustainable crop production in the semi-arid regions of Africa. In some cases information obtained in Asia and the Americas can be extrapolated to Africa but care must be taken in ensuring its applicability. Priorities for future research relevant for Africa are proposed and discussed.  相似文献   
5.
6.
Summary Inheritance of resistance to beet necrotic yellow vein virus (BNYVV) was studied in segregating F2 and backcross families obtained from crosses between resistant plants of the sugar beet selection Holly-1-4 or the wild beet accession Beta vulgaris subsp. maritima WB42 and susceptible parents. Greenhouse tests were carried out, in which seedlings were grown in a mixture of sand and infested soil. Virus concentrations of BNYVV in the rootlets were estimated by ELISA. To discriminate resistant and susceptible plants, mixtures of normal distributions were fitted to log10 virus concentrations, estimated for segregating F1, F2 and BC populations of both accessions. The hypothesis that Holly-1-4 contained one single dominant major gene was accepted. For WB42, results fitted with the hypotheses that resistance was based on either one (or more) dominant major gene(s) showing distorted segregation, or two complementary dominant genes, which are both required for resistance. Resistance from WB42 appeared to be more effective against BNYVV than resistance from Holly-1-4.This research was carried out as part of a PhD study at the Graduate School Experimental Plant Sciences (EPS), Department of Virology, Wageningen, The Netherlands  相似文献   
7.
Beet cyst nematodes (BCN, Heterodera schachtii), Cercospora beticola, and rhizomania, caused by the beet necrotic yellow vein virus (BNYVV) and vectored by the soil-borne fungus Polymyxa betae, are the most serious diseases of sugar beet ( Beta vulgaris subsp. vulgaris). The wild Beta species of section Procumbentes are known to be completely resistant to H. schachtii, C. beticola and P. betae. Alien monosomic additions (2n=19), plants of cultivated beet (2n=18) carrying different individual chromosomes of B. procumbens (2n=18) or B. patellaris (2n=36), were tested in greenhouse experiments for resistance to these pathogens. Gene(s) conferring full resistance to the beet cyst nematode in B. patellaris are located on chromosome 1.1, and the other tested chromosomes of B. patellaris are not involved in the expression of resistance. Artificial inoculation under greenhouse conditions, with in vitro produced inoculum of C. beticola and spot-percentage rating of the disease intensity, showed that the high level of resistance that was observed in the wild species B. procumbens and B. patellaris was not found in any of the monosomic additions tested. It was suggested that genes on various chromosomes of the wild species are needed to express full resistance, and that the chromosomes of group 7 of B. patellaris and chromosome 7 of B. procumbens have the largest effect. The greenhouse tests for resistance to P. betae in B. patellaris derived monosomic additions showed that the addition families of group 4.1 have a strong partial resistance, while the addition families of group 8.1 appeared to be completely resistant to the pathogen. Resistance to P. betae in the two wild species as well as in the two resistant addition types did not exclude infection with BNYVV, but resulted in a considerable reduction of the virus concentration. It was concluded that resistance to the vector would complement virus resistance, and may provide a more effective and durable control of rhizomania. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Summary Sugar beet is a relatively young crop, which supposedly has a narrow genetic base. Natural variation occurring in primitive beet varieties and in wild Beta species has been used for breeding sugar beet. This paper reviews information on desirable characteristics in Beta germplasm and the attempts made for the introgression of such characters into commercial breeding material. After an introduction on the availability of germplasm and the possibilities of hybridisation, attention is focussed on the mating system (especially male sterility), on morphological and physiological characteristics, including yield and sugar content, and on resistances to diseases and pests.  相似文献   
9.
Structural studies on transfer RNA: preliminary crystallographic analysis   总被引:1,自引:0,他引:1  
Single-crystal diffraction patterns from Escherichia coli leucine tRNA and yeast formylmethionine tRNA show a tetragonal lattice for the former, with a = 46 angstroms and c = 137 angstroms, and a hexagonal lattice for the latter, with a = 115 angstroms and c = 137 angstroms. Initial analysis suggests a molecule with a long, double helix parallel to the c-axis for both crystals.  相似文献   
10.
Cytokinin activity: localization in transfer RNA preparations   总被引:15,自引:0,他引:15  
Transfer RNA from yeast, liver, and Escherichia coli has cytokinin activity in the tobacco callus bioassay, whereas ribosomal RNA from yeast is inactive. In contrast to fractions of yeast transfer RNA rich in serine acceptor and cytokinin activity, preparations (70 to 90 percent pure) of arginine transfer RNA(2), glycine transfer RNA, phenylalanine transfer RNA, and valine transfer RNA(1) and of highly purified alanine transfer RNA from yeast were inactive at concentrations of 20 to 2500 micrograms per liter. One molecule of 6-(gamma,gamma-dimethylallylamino) purine per 20 molecules of yeast tRNA would account for the observed cytokinin activity. The number of major molecular species contributing to cytokinin activity of transfer RNA, therefore, must be small.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号