首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
植物保护   1篇
  2023年   1篇
  2020年   2篇
排序方式: 共有3条查询结果,搜索用时 7 毫秒
1
1.
Corn straw is an important source of carbon (C),and when applied to soil,it alters the accumulation and distribution of organic C.However,the mechanistic pathways by which newly added C is stored and stabilized in soil remain a subject of interest and debate among scholars.In this study,we investigated the chemistry of organic matter in different density fractions of Haplic Cambisol (sandy clay loam) in a field experiment with corn straw at8 900 kg ha-1year-1under no tillag...  相似文献   
2.
Biochar application to soil may impact soil nitrogen (N) dynamics, but the effects on N uptake and utilization by crop remain largely unknown, especially the effects of the rate of biochar application. To investigate the effects of biochar on soil 15N retention rate and 15N utilization efficiency (15NUE) by maize, a six-month 15N isotope tracer technique combined with in situ pot experiment was conducted in Mollisol. The experiment included four treatments: no biochar applied (CK) and biochar applied at the rates of 12 t ha−1 (P12), 24 t ha−1 (P24) and 48 t ha−1 soil (P48). Compared with CK, biochar application reduced soil bulk density and 15N loss rate, and significantly improved total N and 15N retention amount in the 0–30 cm soil depth. The P24 treatment had the largest increase in 15N retention rate throughout the 0–40 cm depth. After biochar application, the 15N uptake and 15NUE were significantly increased in the grain and leaf, which promoted grain yields. Contrary to this, the P48 treatment appeared to lower 15N uptake and 15NUE compared with P12 and P24. In conclusion, biochar application improves the potential of the soil to retain N and the improvement in 15N uptake and utilization are more pronounced in maize leaves and grain. Moreover, biochar application promotes 15N utilization in maize plant and improves maize yield. However, when biochar application rate is high (i.e. P48 treatment), the 15N retention by the soil and 15N utilization by the maize are reduced markedly compared with P12 and P24.  相似文献   
3.
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon (SOC) and its labile fractions, as well as soil aggregates and organic carbon (OC) associated with water-stable aggregates (WSA). Moreover, the labile SOC fractions play an important role in OC turnover and sequestration. The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA. Corn straw was returned in the following depths: (1) on undisturbed soil surface (NTS), (2) in the 0-10 cm soil depth (MTS), (3) in the 0-20 cm soil depth (CTS), and (4) no corn straw applied (CK). After five years (2014-2018), soil was sampled in the 0-20 and 20-40 cm depths to measure the water-extractable organic C (WEOC), permanganate oxidizable C (KMnO4-C), light fraction organic C (LFOC), and WSA fractions. The results showed that compared with CK, corn straw amended soils (NTS, MTS and CTS) increased SOC content by 11.55%-16.58%, WEOC by 41.38%-51.42%, KMnO4-C and LFOC by 29.84%-34.09% and 56.68%-65.36% in the 0-40 cm soil depth. The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes. Compared with CK, soils amended with corn straw increased mean weight diameter by 24.24%-40.48% in the 0-20 cm soil depth. The NTS and MTS preserved more than 60.00% of OC in macro-aggregates compared with CK. No significant difference was found in corn yield across all corn straw returning modes throughout the study period, indicating that adoption of NTS and MTS would increase SOC content and improve soil structure, and would not decline crop production.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号