首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   10篇
畜牧兽医   42篇
植物保护   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有44条查询结果,搜索用时 797 毫秒
1.
2.
The aim was to verify the effect of follicle‐stimulating hormone (FSH) supplementation to α‐MEM+ or TCM199+ media on the in vitro development of ovarian preantral follicles (PFs) derived from collared peccaries. Ovaries (n = 5 pairs) were collected and divided into fragments destined to control group (non‐cultured) or treatments that were cultured for 7 days. The PFs morphology, growth and activation were evaluated by classical histology. The immunohistochemistry markers Ag‐NOR and PCNA were used for nuclear proliferation analysis, and the picrosirius red labelling was used for ovarian extracellular matrix (ECM) evaluation. After 7‐day culture, only the TCM199+ treatment maintained the proportion of intact PFs similar to day 1 (63.2%), but no differences were found among treatments (p > .05). In addition, a significant increase in the growing follicles proportion was verified for all the treatments, indicating follicular activation (p > .05). By the Ag‐NOR analysis, only the TCM199+/FSH maintained the nuclear proliferation similar to the first day (p > .05). The picrosirius red staining revealed that the ECM remained intact in all the treatments (p > .05). We suggest the use of TCM199+ medium supplemented of FSH for the in vitro development of peccaries PFs under 7‐day culturing conditions.  相似文献   
3.
4.
5.
Fossil cephalopods are frequently encrusted by epibionts; however, determining whether encrustation occurred prior to or post‐mortem to the host, and whether the final environment of deposition corresponds to the habitat of encrustation is complex. The present paper describes cirripede epibionts, their calcareous bases and their attachment scars on 6 post‐mortem shells of Nautilus macromphalus, collected from deep water off New Caledonia. The cirripedes have left both cemented calcareous bases of Hexelasma and scars associated with bioerosion and discoloration produced by verrucomorph barnacles. Live cirripedes included a Metaverruca recta, with articulated opercular plates and organic tissue (on a shell that had been exposed on the sea floor for at least 150 years), and specimens of Hexelasma velutinum, one of which was partly attached to an internal surface of a shell. The disposition of verrucomorphs indicates that most Nautilus shells were colonized post‐mortem rather than during a floating stage. However, as cirripedes are known to have colonized living Nautilus, some Hexelasma, preserved only as calcareous eroded bases, may represent specimens that settled on a living Nautilus. The degree of bioerosion and discoloration induced by verrucomorph barnacles varies according to the surface preservation of Nautilus shells, with deeper and discolored traces preserved on old and degraded shells. Traces made by verrucomorphs described here are ellipsoidal and a new ichnotaxon, Anellusichnus ellipticus, is proposed to accommodate them. Importantly, verrucomorphs and other cirripede taxa with membranous bases that were attached to pristine shells may not leave any substantial scars, and, thus, will be difficult to detect in the fossil record.  相似文献   
6.
7.
8.
The anesthetic and cardiorespiratory effects of a low dose (LD, 0.4 mg kg?1 xylazine and 4 mg kg?1 ketamine) and a high dose (HD, 0.8 mg kg?1 xylazine and 8 mg kg?1 ketamine) of IM xylazine–ketamine combination were compared in a randomized cross‐over study using six castrated male llamas. Three llamas in each dosage group (LDT, HDT) were assigned to receive IM tolazoline (2 mg kg?1) after 30 minutes of recumbency. All IM injections were given in the semitendinosus or semimembranosus muscles. Pulse, respiratory rate, and indirect arterial blood pressure were recorded every 10 minutes, and hemoglobin oxygen saturation was recorded every 5 minutes during lateral recumbency. Samples for arterial blood gas analysis were collected 5 minutes following recumbency and every 30 minutes thereafter. Base‐to‐apex ECG was monitored continuously. Analgesia was evaluated every 5 minutes by both a 30 minutes skin pinch and a needle prick of the toe. Most llamas breathed room air throughout anesthesia. Two llamas that developed severe hypoxemia (SpO2 < 75%) received 5 minutes of nasal oxygen insufflation, but were maintained on room air for the rest of the anesthetic period. anova for repeated measures and Tukey's test were used to analyze cardiorespiratory data. Fischer's exact test was used to compare the ability of each to provide >30 minutes of lateral recumbency and analgesia. A p‐value < 0.05 was considered significant. Both dosages provided reasonably rapid induction following injection (LD: 10.8 ± 6.3 minutes; HD: 5.0 ± 1.1 minutes; p = 0.07). Duration of lateral recumbency and analgesia were 34.7 ± 6.7 and 27.3 ± 4.6 minutes, respectively, in the LDT llamas. None of the three remaining LD llamas remained in lateral recumbency for longer than 12 minutes. Duration of lateral recumbency and analgesia were 87.3 ± 18.5 and 67.7 ± 16.0 minutes, respectively, for the HD llamas that did not receive tolazoline. The HDT llamas were recumbent for a significantly shorter time (43.3 ± 0.6 minutes; p = 0.05). The ability to provide >30 minutes of recumbency and analgesia was better in the HD group (6/6) than in the LD group (2/6) (p = 0.03). No differences between dosages were seen in pulse rate, respiratory rate, or arterial pressures. No ECG abnormalities were seen. Transient hypoxemia was seen in the first 10 minutes of lateral recumbency in the HD group by both hemoglobin oxygen saturation (84 ± 9.5%) and by blood gas PaO2 (44.5 ± 5.8 mm Hg). It was concluded that the HD provided more consistent results than the LD, but induced transient hypoxemia. Tolazoline shortened the recovery time in llamas receiving the HD.  相似文献   
9.
10.
Four experiments were conducted to evaluate the influence of changing the proportion of supplemental degradable intake protein (DIP) from urea on forage intake, digestion, and performance by beef cattle consuming either low-quality, tallgrass prairie forage (Exp. 1, 2, and 4) or forage sorghum hay (Exp. 3). Experiments 1, 2, and 3 were intended to have four levels of supplemental DIP from urea: 0, 20, 40, and 60%. However, refusal to consume the 60% supplement by cows grazing tallgrass prairie resulted in elimination of this treatment from Exp. 1 and 2. Levels of supplemental DIP from urea in Exp. 4 were 0, 15, 30, and 45%. Supplements contained approximately 30% CP, provided sufficient DIP to maximize digestible OM intake (DOMI) of low-quality forage diets, and were fed to cows during the prepartum period. In Exp. 1, 12 Angus x Hereford steers (average initial BW = 379) were assigned to the 0, 20, and 40% treatments. Forage OM intake, DOMI, OM, and NDF digestion were not affected by urea level. In Exp. 2, 90 pregnant, Angus x Hereford cows (average initial BW = 504 kg and body condition [BC] = 5.0) were assigned to the 0, 20, and 40% treatments. Treatment had little effect on cow BW and BC changes and calf birth weight, ADG, or weaning weight. However, pregnancy rate tended to be lowest (P = 0.13) for the greatest level of urea. In Exp. 3, 120 pregnant, crossbred beef cows (average initial BW = 498 kg and BC = 4.6) were assigned to the 0, 20, 40, and 60% treatments. Prepartum BC change tended (P = 0.08) to be quadratic (least increase for 60% treatment), although BW change was not statistically significant. Treatment effect on calf birth weight was inconsistent (cubic; P = 0.03), but calf ADG and weaning weight were not affected by treatment. Pregnancy rate was not affected by prepartum treatment. In Exp. 4, 132 pregnant, Angus x Hereford cows (average initial BW = 533 and BC = 5.3) were assigned to the 0, 15, 30, and 45% treatments. Prepartum BC loss was greatest (quadratic; P = 0.04) for the high-urea (45%) treatment, although BW loss during this period declined linearly (P < 0.01). Prepartum treatment did not affect pregnancy rate, calf birth weight, or ADG. In conclusion, when sufficient DIP was offered to prepartum cows to maximize low-quality forage DOMI, urea could replace between 20 and 40% of the DIP in a high-protein (30%) supplement without significantly altering supplement palatability or cow and calf performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号