首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167463篇
  免费   9241篇
  国内免费   86篇
林业   6592篇
农学   5137篇
基础科学   1079篇
  19167篇
综合类   32919篇
农作物   6777篇
水产渔业   7904篇
畜牧兽医   84821篇
园艺   2072篇
植物保护   10322篇
  2018年   2050篇
  2017年   2295篇
  2016年   2196篇
  2015年   1925篇
  2014年   2264篇
  2013年   6306篇
  2012年   4413篇
  2011年   5349篇
  2010年   3548篇
  2009年   3491篇
  2008年   5250篇
  2007年   4991篇
  2006年   4771篇
  2005年   4485篇
  2004年   4446篇
  2003年   4422篇
  2002年   4243篇
  2001年   5260篇
  2000年   5165篇
  1999年   4011篇
  1998年   1752篇
  1997年   1751篇
  1996年   1572篇
  1995年   1938篇
  1994年   1793篇
  1993年   1722篇
  1992年   3559篇
  1991年   3711篇
  1990年   3621篇
  1989年   3730篇
  1988年   3325篇
  1987年   3463篇
  1986年   3657篇
  1985年   3512篇
  1984年   2821篇
  1983年   2584篇
  1982年   1806篇
  1981年   1653篇
  1979年   2553篇
  1978年   2060篇
  1977年   1704篇
  1976年   1642篇
  1975年   1757篇
  1974年   2220篇
  1973年   2302篇
  1972年   2235篇
  1971年   2154篇
  1970年   1999篇
  1969年   1839篇
  1967年   1573篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Trout and charr, members of the salmonid family, have high conservation value but are also susceptible to anthropogenic threats in part due to the specificity of their habitat requirements. Understanding historical and future threats facing these species is necessary to promote their recovery. Of freshwater trout and charr in the Canadian Rocky Mountain region, westslope cutthroat trout (Oncorhynchus clarkii lewisi), bull trout (Salvelinus confluentus; a charr species) and Athabasca rainbow trout (Oncorhynchus mykiss) are of conservation concern. And indeed, range contractions and declining populations are evident throughout much of their ranges. Range contraction was most evident in the southern Alberta designatable unit (DU) of westslope cutthroat trout. Diminished populations were also evident in the downstream watersheds of the Alberta bull trout range, and throughout the Athabasca rainbow trout range. We assessed historical and future threats to evaluate the relative importance of individual threats to each DU and compare their impact among species. Individual threats fall into the broad categories of angling, non-native species and genes, habitat loss and alteration, and climate change. Severity of each threat varies by DU and reflects the interaction between species’ biology and the location of the DU. Severity of threats facing each DU has changed over time, reflecting extirpation of native populations, changes in management and industry best practices, expansion of non-native species and progressing climate change. The overall threat impact for each DU indicates a high probability of substantial and continuing declines and calls for immediate action.  相似文献   
2.
The objective of this experiment was to evaluate the Fieldscout CM 1000 NDVI and Yara N‐Tester as easy‐to‐use and cost‐effective tools for predicting foliar chlorophylls (a, b and total) and crude protein (CP) concentrations in herbage from three tropical grass species. Optical chlorophyll measurements were taken at three stages (4, 8 and 12 weeks) of regrowth maturity in Guinea grass (Panicum maximum) and Mulato II (Brachiaria hybrid) and at 6 and 12 weeks maturity in Paspalum spp (Paspalum atratum). Grass samples were harvested subsequent to optical measurements for laboratory analysis to determine CP and solvent‐extractable chlorophylls (a, b and total) concentrations. Optical chlorophyll measurements and CP concentrations were highly correlated (Yara N‐Tester: r2 = 0·77–0·89; Fieldscout CM 1000 NDVI: r2 = 0·52–0·84). Crude protein prediction models from the Yara N‐Tester and Fieldscout CM 1000 NDVI accounted for 70–89% and 44–73% CP variability, respectively, in Mulato II and Guinea grass. The Yara N‐tester produced more accurate and reliable CP estimates based on very high concordance correlation coefficient [CCC (0·73–0·91)] and low rMSPE, mean and regression bias. It is concluded that the Yara N‐Tester produces more accurate and reliable CP estimates of tropical pastures.  相似文献   
3.
Carbon storage in the soils on the Qinghai–Tibetan Plateau plays a very important role in the global carbon budget. In the 1990s, a policy of contracting collective grasslands to smaller units was implemented, resulting in a change from the traditional collective grassland management to two new management patterns: a multi‐household management pattern (MMP: grassland shared by several households without enclosures) and a single‐household management pattern (SMP: grassland enclosed and used by only one household). In 2016, 50 MMP and 54 SMP winter pastures on the Qinghai–Tibetan Plateau were sampled to assess the differences in soil organic carbon (SOC) between the two management patterns. Results showed that average SOC was significantly greater under MMP than under SMP, with an estimated 0.41 Mg C/ha/yr lost due to SMP following the new grassland contract. Based on the government's grassland policy, four grassland utilization scenarios were developed for both summer and winter pastures. We found that if the grassland were managed under SMP, likely C losses ranged between 0.31 × 107 and 6.15 × 107 Mg C/yr across the Qinghai–Tibetan Plateau relative to MMP, which more closely resembles pre‐1990s grassland management. Previous estimates of C losses have only considered land use change (with cover change) and ignored the impacts driven by land management pattern changes (without cover change). The new data suggest that C losses from the Qinghai–Tibetan Plateau are greater than previously estimated, and therefore that the grassland contract policy should be reviewed and SMP households should be encouraged to reunite into the MMP. These findings have potential implications for land management strategies not only on the Qinghai–Tibetan Plateau but also other grazing regions globally where such practices may exist.  相似文献   
4.
Freshwater fishes are threatened globally, and often too little is known about threatened species to effectively guide their conservation. Habitat complexity is linked to fish species diversity and persistence, and degraded streams often lack habitat complexity. Beaver Castor spp., in turn, have been used to restore streams and increase habitat complexity. The northern leatherside chub Lepidomeda copei is a rare, small‐bodied, drift‐feeding minnow that has anecdotally been observed to use complex habitats associated with beaver dams in the western United States. To investigate this anecdote, we conducted fish and habitat surveys, the latter focusing on quantifying habitat complexity, in a sub‐basin of the Upper Snake River Basin in the USA. Complementary generalised linear model and path analyses revealed that northern leatherside chub occurred more often at sites with complex streamflows, and streamflows were more complex when beaver dams were present and pools were deeper. Northern leatherside chubs were also more likely to occur when temperatures were warmer, aquatic macrophytes were abundant and stream channels were narrow and deep. The linkage between chubs, complex streamflows and beaver dams needs to be evaluated more broadly to completely understand its role in the rangewide status of the species. However, it does suggests that increased use of beaver reintroductions and dam analogues for stream restoration could be a boon for the northern leatherside chub, but such efforts should be monitored to determine their effectiveness to help adapt beaver‐based restoration approaches to best benefit the species.  相似文献   
5.
Sea urchins produce high‐energy, membrane‐bound fecal pellets that contain residual nutrients and large quantities of microbiota. These egesta are readily consumed by the shrimp, Litopenaeus vannamei. Egesta of the sea urchin, Lytechinus variegatus, were evaluated as a feed supplement or total replacement for a commercial shrimp diet. Shrimp were stocked at 0.49 g ± 0.06 g initial body weight and housed individually in 2.8‐L tanks in a commercial recirculating zebrafish system. Shrimp were assigned to one of six diets: commercial shrimp feed, reference sea urchin feed, collected dried sea urchin egesta, collected wet sea urchin egesta, half ration of shrimp feed and half collected wet sea urchin egesta, and egesta naturally produced by two sea urchins in polyculture. Equivalent dry matter amounts of each diet were proffered to shrimp in each treatment twice daily, except for those that had complete access to natural egesta excreted by sea urchins in polyculture. Sea urchins were proffered a reference sea urchin feed at 2% body weight daily. After 27 days, shrimp proffered collected dried or wet egesta did not differ significantly in percent weight gain and showed the lowest weight gain. The percent weight gain of shrimp fed the commercial shrimp diet did not differ significantly from that of the shrimp fed half commercial shrimp diet and half egesta. The highest weight gain was recorded for those shrimp that consumed the untouched egesta produced by sea urchins in polyculture. These data suggest that consumed egesta have noteworthy nutritional value and therefore would be beneficial to the culture of extractive species in an integrated multitrophic aquaculture system.  相似文献   
6.
7.
The important root characteristics of root length density (RLD) and root mass density (RMD) generally differ among irrigation managements and potato cultivars. The objective of this study was to investigate the RLD and RMD variations and their functional relationships with gross potato tuber yield for two commercial potato cultivars, Agria and Sante, under different irrigation strategies. Full irrigation and water‐saving irrigation strategies, deficit and partial root drying irrigations, were applied statically (S) and dynamically (D) based on daily crop evapotranspiration. Results showed that SPRD had significantly greater RLD (3.64 cm/cm3) and RMD (132.7 μg/cm3) than other irrigation treatments. Between the potato cultivars, Agria had significantly larger values of RLD (3.50 cm/cm3) and RMD (138.7 μg/cm3) than Sante. The functional relationship between the root growth characteristics and tuber yield showed that under water‐saving irrigations, Agria increased root mass at the expense of gross tuber yield but Sante increased root mass to maintain larger gross tuber yields. However, Agria produced more roots and gross tuber yield than Sante, and it is concluded that Agria is a more drought‐tolerant potato cultivar, which is recommended for tuber production in regions where water might be scarce. It was shown that larger root production in potatoes was associated with improved tolerance to water stress.  相似文献   
8.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
9.
Lampreys have a complex life cycle which includes a multi‐year infaunal larval stage (ammocoete). Gut content analysis has generally identified detritus (i.e., unidentifiable organic matter) as the major dietary component to ammocoetes, though algae can also be important. However, gut content preserves only a snapshot of the animal's diet and does not reflect assimilated material. In order to better characterise the nutritional sources supporting ammocoete growth, we analysed ammocoete body tissue and potential dietary sources at two streams using natural Δ14C and δ15N to estimate time‐integrated nutritional support. Bayesian isotope mixing models revealed differences in the importance of sources supporting ammocoetes between sites. Ammocoetes from a stream in a mixed land usage area (~50% agriculture, ~40% forest and ~10% developed) were primarily supported (mean: ~50%) by fresh terrestrial organic matter but were also supported by substantial contributions (mean: ~30%) by aged organic matter (AOM) and autochthonous material (algae; mean ~20%). In a predominantly forested (~90%) headwater stream, different modelling scenarios (uninformed or informed priors) suggested that algal support of ammocoete nutrition ranged from 7% to 45%. However, the model relying on informed priors developed from gut content analysis produced the low estimates, suggesting these were more reliable. When algae were a minor component of the nutrition at the forested site, ammocoetes were highly dependent on AOM (83 ± 26%; mean ± SD). Based on these findings, ammocoete growth and development are predicted to be strongly influenced by both land use and the availability of allochthonous and autochthonous materials of varying ages within streams.  相似文献   
10.
Vegetation indices are widely used as model inputs and for non‐destructive estimation of biomass and photosynthesis, but there have been few validation studies of the underlying relationships. To test their applicability on temperate fens and the impact of management intensity, we investigated the relationships between normalized difference vegetation index (NDVI), leaf area index (LAI), brown and green above‐ground biomass and photosynthesis potential (PP). Only the linear relationship between NDVI and PP was management independent (R2 = 0·53). LAI to PP was described by a site‐specific and negative logarithmic function (R2 = 0·07–0·68). The hyperbolic relationship of LAI versus NDVI showed a high residual standard error (s.e.) of 1·71–1·84 and differed between extensive and intensive meadows. Biomass and LAI correlated poorly (R2 = 0·30), with high species‐specific variability. Intensive meadows had a higher ratio of LAI to biomass than extensive grasslands. The fraction of green to total biomass versus NDVI showed considerable noise (s.e. = 0·13). These relationships were relatively weak compared with results from other ecosystems. A likely explanation could be the high amount of standing litter, which was unevenly distributed within the vegetation canopy depending on the season and on the timing of cutting events. Our results show there is high uncertainty in the application of the relationships on temperate fen meadows. For reliable estimations, management intensity needs to be taken into account and several direct measurements throughout the year are required for site‐specific correction of the relationships, especially under extensive management. Using NDVI instead of LAI could reduce uncertainty in photosynthesis models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号