首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
基础科学   1篇
综合类   4篇
水产渔业   1篇
畜牧兽医   19篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2005年   1篇
  2003年   4篇
  2000年   9篇
  1998年   1篇
  1996年   4篇
  1990年   1篇
  1989年   1篇
排序方式: 共有25条查询结果,搜索用时 375 毫秒
1.
2.
Selamectin, a novel avermectin, was evaluated in two controlled studies (one in Beagles, one in domestic shorthaired cats) to determine an appropriate topical dose for efficacy against adult Ctenocephalides felis felis (C. felis) fleas on dogs and cats for 1 month. For each study, animals were allocated randomly to four treatments. One treatment consisted of the inert formulation ingredients (vehicle) administered as a negative control, and the other three treatments consisted of a single topical dosage of 3, 6, or 9mgkg(-1) of selamectin. In each study, selamectin was administered as a topical dose applied to the skin in a single spot at the base of the neck in front of the scapulae. Dogs and cats were infested with 100 viable unfed C. felis (50 males and 50 females) on days 4, 11, 18, and 27. Seventy-two hours (+/-2h) after each infestation, on days 7, 14, 21, and 30, a comb count to determine the number of viable fleas present on each animal was performed. Efficacy of selamectin on day 30 was used to select an appropriate dose. For dogs and cats, percentage reductions in geometric mean flea comb counts for the three selamectin treatments ranged from 94. 6 to 100% on days 7, 14, and 21, compared with the negative-control treatment. On day 30, reductions in flea comb counts were 81.5, 94.7, and 90.8% for dogs, and 79.8, 98.0, and 96.2% for cats treated with selamectin at 3, 6, or 9mgkg(-1), respectively. For day 30 flea comb counts for dogs and cats, analysis of variance showed that the three selamectin treatments resulted in significantly (P< or =0.05) lower counts than did the negative-control treatment. For dogs and cats, geometric mean flea counts for selamectin administered at a dosage of 3mgkg(-1) were significantly (P< or =0.05) higher than those for the 6 and 9mgkg(-1) treatment dosages combined. There were no significant differences in flea counts between the 6 and 9mgkg(-1) treatments. This analysis was confirmed by linear-plateau modeling. Thus, the optimal dose of selamectin for efficacy against adult fleas for both dogs and cats, as estimated by the turning point (plateau) in the dose response curve, was 6mgkg(-1).  相似文献   
3.
In a series of six controlled studies (four in dogs, two in cats), heartworm-free dogs and cats were inoculated with Dirofilaria immitis larvae (L(3)) prior to topical treatment with the novel avermectin selamectin or a negative control containing inert formulation ingredients (vehicle). Selamectin and negative-control treatments were administered topically to the skin at the base of the neck in front of the scapulae. In dogs, selamectin was applied topically at dosages of 3 or 6mgkg(-1) at 30 days post-inoculation (PI), or of 3 or 6mgkg(-1) at 45 days PI, or of 6mgkg(-1) at 60 days PI. Cats were treated topically with unit doses providing a minimum dosage of 6mgkg(-1) selamectin at 30 days PI. Of the animals that were treated 30 days PI, some dogs were bathed with water or shampoo between 2 and 96h after treatment, and some cats were bathed with shampoo at 24h after treatment. Between 140 and 199 days PI, the animals were euthanized and examined for adult D. immitis. Adult heartworms developed in all control dogs (geometric mean count, 18.7 worms) and in 88% of control cats (geometric mean count, 2.1 worms). Selamectin was 100% effective in preventing heartworm development in dogs when administered as a single topical dose of 3 or 6mgkg(-1) at 30 days after infection, 3 or 6mgkg(-1) at 45 days after infection, or 6mgkg(-1) at 60 days after infection. Selamectin was 100% effective against heartworm infections in cats when administered as a single topical unit dose of 6mgkg(-1). Bathing with water or shampoo between 2 and 96h after treatment did not reduce the efficacy of selamectin as a heartworm prophylactic in dogs. Likewise, bathing with shampoo at 24h after treatment did not reduce the efficacy of selamectin in cats. These studies demonstrated that, at the recommended dosage and treatment interval, a single topical administration of selamectin was 100% effective in preventing the development of D. immitis in dogs and cats.  相似文献   
4.
A single dose of 5 x 10(8) bacilli of Pseudomonas pseudomallei by intratracheal injection resulted in acute (21 cases) or chronic (19 cases) melioidosis in 40 of 48 pigs. Fifteen (10 acute and 5 chronic) had been immunosuppressed by cyclophosphamide before inoculation. The major clinical signs were initial fever, marked neutrophilia and, in the acute cases, respiratory distress. There were no signs of the nasal and ocular discharge, paresis or diarrhoea seen in acute cases in south-east Asia. The cyclophosphamide treatment caused a significant decrease in the neutrophil count by 7 d after inoculation in all 15 immunosuppressed pigs, and all were culture positive at necropsy. Eight of the 33 non-treated pigs were culture negative at necropsy. Pigs overcoming the initial phase of infection had more abscess-like nodules that were bacteriologically sterile at necropsy than the pigs with acute cases of melioidosis. P. pseudomallei was isolated predominantly from the spleen, lungs and the injection site. Although only one strain was used in this study, it is likely that Australian strains of P. pseudomallei are not as virulent as the south-east Asian isolates.  相似文献   
5.
Effects of small population size and reduced genetic variation on the viability of wild animal populations remain controversial. During a 35-year study of a remnant population of greater prairie chickens, population size decreased from 2000 individuals in 1962 to fewer than 50 by 1994. Concurrently, both fitness, as measured by fertility and hatching rates of eggs, and genetic diversity declined significantly. Conservation measures initiated in 1992 with translocations of birds from large, genetically diverse populations restored egg viability. Thus, sufficient genetic resources appear to be critical for maintaining populations of greater prairie chickens.  相似文献   
6.
The objectives of this study were to determine effects of cyfluthrin and pyrethrin spray products, used in combination with cyfluthrin topical and ear tag applications, on bull reproductive parameters over 18 weeks. Angus or Angus x Simmental bulls were randomly assigned to one of three treatment groups: (i) no exposure to pyrethrins/cyfluthrin (CONT; n = 10), (ii) cyfluthrin ear tag and topical applications (ET; n = 10), or (iii) cyfluthrin ear tag, topical, premise spray and pyrethrin fog spray applications (ET+S; n = 8). Bull body weight was measured every 3 week, and body condition score and scrotal circumference were recorded on weeks 0, 9 and 18. Semen and serum were collected every 3 weeks for sperm evaluation and testosterone measurement, respectively. There was a treatment × week interaction (p < 0.01) for sperm with primary defects; bulls in CONT group had a greater (p = 0.01) percentage of sperm with primary defects than bulls treated with insecticides at week 18. Overall and progressive sperm motility, normal sperm morphology, secondary sperm defects and serum testosterone concentrations changed (p < 0.01) over time in all bulls; however, treatment did not affect (p ≥ 0.13) any of these parameters. There were also no treatment effects (p ≥ 0.08) on bull body weight, body condition score or scrotal circumference. The use of pyrethrin‐ and cyfluthrin‐based insecticides, regardless of application, did not negatively affect reproductive parameters in beef bulls when administered over 18 weeks.  相似文献   
7.
The activity of selamectin, fipronil and imidacloprid against larval cat fleas (Ctenocephalides felis felis) was evaluated in an in vitro potency assay system. One hundred microliters of each compound at various concentrations in acetone were added to glass vials (1.5 by 3 cm) to which had been previously added 20 mg of sand and 10 mg of flea feces. Vials were then ball milled to allow the acetone to evaporate. Selamectin and fipronil were tested at 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.11, 0.3, and 0.5 microg of active compound per tube. Imidacloprid was tested at 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 microg of active compound per tube. Thirty first instar C. felis larvae were added to each vial. The number of larvae remaining alive in each vial was determined once daily for 72 h. With selamectin, reductions of >/=93.5% were achieved at 24 h after exposure at doses of >/=0.3 microg. In contrast, at 24 h neither fipronil nor imidacloprid reached 90% reduction, even at the highest doses tested (0.5 microg for fipronil and 5.0 microg for imidacloprid). Selamectin was significantly (P/=0.03 microg. A similar pattern of activity was observed at both 48 and 72 h, but higher percentages of larvae were killed for each of the compounds as the incubation time increased. At 72 h selamectin was significantly (P相似文献   
8.
OBJECTIVE: To determine whether treatment with selamectin would reduce clinical signs of flea allergy dermatitis (FAD) in dogs and cats housed in flea-infested environments. DESIGN: Randomized controlled trial. ANIMALS: 22 dogs and 17 cats confirmed to have FAD. PROCEDURE: Animals were housed in carpeted pens capable of supporting the flea life cycle and infested with 100 fleas (Ctenocephalides felis) on days -13 and -2 and on alternate weeks with 10 to 20 fleas. On day 0, 11 dogs and 8 cats were treated with selamectin (6 mg/kg [2.7 mg/lb]). Dogs were retreated on day 30; cats were retreated on days 30 and 60. All animals were examined periodically for clinical signs of FAD. Flea counts were conducted at weekly intervals. RESULTS: Throughout the study, geometric mean flea counts exceeded 100 for control animals and were < or = 11 for selamectin-treated animals. Selamectin-treated cats had significant improvements in the severity of miliary lesions and scaling or crusting on days 42 and 84, compared with conditions on day -8, and in severity of excoriation on day 42. In contrast, control cats did not have any significant improvements in any of the clinical signs of FAD. Selamectin-treated dogs had significant improvements in all clinical signs on days 28 and 61, but in control dogs, severity of clinical signs of FAD was not significantly different from baseline severity at any time. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that topical administration of selamectin, even without the use of supplementary environmental control measures and with minimal therapeutic intervention, can reduce the severity of clinical signs of FAD in dogs and cats.  相似文献   
9.
The speed of kill of selamectin, imidacloprid, and fipronil-(S)-methoprene against Ctenocephalides felis infestations on cats for one month following a single treatment was evaluated. Eighty cats were randomly allocated so that there were 20 cats in four different treatment groups. On Days -2, 7, 14, 21, and 28, each cat was infested with 100 adult C. felis from the Kansas 1 flea strain. Following initial application only imidacloprid had caused a significant reduction in adult fleas on treated cats within 6 hours, but by 24 hours all three formulations had killed 96.7% of the fleas. At 7 days post treatment, all three formulations reduced flea populations within 6 and 24 hours by 68.4% and 99.4%, respectively. At 21 and 28 days after treatment, none of the formulations killed significant numbers of fleas as compared to controls within 6 hours of infestation. At 28 days after treatment, selamectin, fipronil-(S)-methoprene, and imidacloprid had killed 99.0%, 86.4%, and 72.6% of the fleas within 48 hours of infestation, respectively. This study demonstrates that the speed of kill of residual flea products on cats decreases throughout the month following application. It also demonstrated that selamectin provided the highest level of residual activity on cats against the Kansas 1 flea strain.  相似文献   
10.
Selamectin was evaluated in eight controlled studies (4 in dogs, 4 in cats) to determine the efficacy of a single topical unit dose providing the recommended minimum dosage of 6mgkg(-1) against Ctenocephalides felis felis and Ctenocephalides canis fleas on dogs and against C. felis on cats. In addition, the effect of bathing on the efficacy of selamectin against C. felis was evaluated. Identical studies were performed in Beagles and domestic shorthaired cats. For each study, animals were allocated randomly to treatments of 8-12 animals each. All studies (dog studies A, B, C, and D and cat studies A, B, C, and D) evaluated the efficacy of selamectin without bathing. In addition, study C in both dogs and cats evaluated efficacy with a shampoo bath at 24h after dosing, and study D evaluated the efficacy of selamectin with water soaking at 2h after dosing or with a shampoo bath at 2-6h after dosing. Dog study B evaluated efficacy against C. canis, whereas all other studies used C. felis. In each study, selamectin was administered on day 0 as a topical dose that was applied directly to the skin in a single spot at the base of the neck in front of the scapulae. Dogs and cats were infested with approximately 100 viable unfed C. felis or C. canis on days 4, 11, 18, and 27. On days 7, 14, 21, and 30, approximately 72h after infestation, a comb count of the number of viable fleas present on each animal was made. For C. felis and C. canis for dogs and cats, compared with controls, selamectin achieved significant reductions in geometric mean adult flea comb counts of > or =98.9% on days 7, 14, and 21 in all eight studies. On day 30, the reduction for C. felis remained at or above 98.0%. This included the dogs and cats that were soaked with water or bathed with shampoo at 2, 6, or 24h after treatment. There were no significant (P>0.05) differences between the flea counts from selamectin-treated animals in these studies, regardless of bathing status. On day 30, a significant reduction of 91.8% was achieved against C. canis on dogs. Thus, these studies demonstrated that a single topical unit dose of selamectin was highly effective against adult fleas on dogs and cats for at least 27 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号