首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
畜牧兽医   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 79 毫秒
1
1.
Objective— To evaluate the effects of tibial plateau leveling osteotomy (TPLO) on femorotibial contact mechanics and 3-dimensional (3D) kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs.
Study Design— In vitro biomechanical study.
Animals— Unpaired pelvic limbs from 8 dogs, weighing 28–35 kg.
Methods— Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135°. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TPLO-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test ( P <.05) was used for statistical comparison.
Results— Significant disturbances to all measured contact mechanical variables were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and increased internal tibial rotation in the CrCL-deficient stifle. No significant differences in 3D femorotibial alignment were observed between normal and TPLO-treated stifles; however, femorotibial contact area remained significantly smaller and peak contact pressures in both medial and lateral stifle compartments were positioned more caudally on the tibial plateau, when compared with normal.
Conclusion— Whereas TPLO eliminates craniocaudal stifle instability during simulated weight bearing, the procedure fails to concurrently restore femorotibial contact mechanics to normal.
Clinical Relevance— Progression of stifle osteoarthritis in dogs treated with TPLO may be partly the result of abnormal stifle contact mechanics induced by altering the orientation of the proximal tibial articulating surface.  相似文献   
2.
Objective: To report biomechanical properties of the Biologic Fixation System (BFX) acetabular cup impacted into a normal canine pelvis and to compare the effect of implant positioned to and beyond the medial acetabular wall. Study Design: In vitro cadaveric study. Animals: Hemipelves of mature, large‐breed dogs (n=6). Methods: For each dog, 1 hemipelvis was reamed to the depth of the acetabular wall (group A) and 1 was reamed an additional 6 mm after penetration of the medial cortex of the acetabulum (group B). The hemipelves were implanted with acetabular cups and loaded in compression through a matching femoral prosthetic component until failure. Specimen stiffness, and failure displacement, load, and energy were determined from load and displacement data and results between groups compared with a paired t‐test. Results: Mean failure load was greater in group A (3812 ± 391 N) than group B (2924 ± 316 N; P<.014). No other differences (P>.05) were observed between groups. Bone fracture (n=5) and cup displacement (1) occurred in group A whereas in group B there were 3 fractures and 3 cup displacements. Conclusions: Although medial placement of the BFX cup affected compressive failure loads, failure loads for both groups exceeded normal physiologic loads. Clinical Relevance: Medial positioning of the acetabular cup does not appear to compromise acetabular implant‐pelvic stability under normal physiologic loads. Because arthroplasty candidates often have abnormal acetabular architecture, mechanical properties of the cup placed in acetabula without a dorsal rim should be investigated.  相似文献   
3.
Objective: To test the cutting performance of 2 commercially available oscillating saws designed for use during tibial plateau leveling osteotomy (TPLO) and to evaluate the influence of saline irrigation on cutting performance. Study Design: In vitro experimental study. Sample Population: Composite polyurethane test blocks (n=40); 24 mm TPLO saw blades. Methods: Controlled force cutting tests were performed using custom‐made laminated bone substitute blocks to model the canine proximal tibia. Half of the trials were irrigated with 0.9% saline solution. Outcome measures were test block temperature (measured 1.5 mm from the cutting zone), cutting rate, and cutting surface wear. Durability was measured by recording change in performance over multiple consecutive trials. Results: The Synthes blade cut the test blocks with ~64% less heat generation and at a 63% faster cutting rate compared with the Slocum blade. Although wear of the Synthes blade was ~50% greater after 19 uses, this did not negatively impact cutting performance. Saline irrigation produced no significant effect on peak cutting temperature but significantly reduced cutting rate for both saws. Conclusions: Our results favor the Synthes blade in terms of cutting performance and the Slocum blade in terms of wear resistance.  相似文献   
4.
Objective— To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs.
Study Design— In vitro biomechanical study.
Animals— Unpaired pelvic limbs from 8 dogs, weighing 28–35 kg.
Methods— Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135°. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test ( P <.05) was used for statistical comparison.
Results— Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles.
Conclusion— TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal.
Clinical Relevance— TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号