首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
林业   1篇
农作物   1篇
畜牧兽医   3篇
  2021年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRβ-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-β (Aβ) deposition in an Alzheimer’s disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aβ and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aβ plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aβ load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.  相似文献   
2.
The primary complication of seasonal influenza in humans is viral pneumonia. A conventional animal model--intranasal inoculation of ferrets with 10(6) median tissue culture infectious dose of virus--results in disease that is neither consistent nor comparable with severe viral pneumonia in humans. Therefore, the authors modified the experimental procedures by increasing the median tissue culture infectious dose to 10(9) and by inoculating via the intratracheal route, testing these procedures with H1N1 strains (A/Bilthoven/3075/1978 and A/Netherlands/26/2007) and H3N2 strains (A/Bilthoven/16190/1968 and A/Netherlands/177/2008) of seasonal influenza virus. The ferrets of all groups (n = 3 per virus strain) had clinical signs, increased body temperature, virus excretion from day 1, loss of body weight, and increased relative lung weight at 4 days postinoculation. All ferrets had severe pulmonary consolidation, and histologic examination revealed moderate to severe necrotizing bronchointerstitial pneumonia with severe edema, necrosis of alveolar epithelium, inflammatory infiltrates in alveolar septa and lumina, epithelial regeneration, and perivascular and peribronchiolar inflammatory infiltrates. The lesions were associated with the presence of influenza virus antigen in respiratory epithelium by immunohistochemistry. Although all 4 virus strains caused pulmonary lesions of comparable severity, virus isolation in the lungs, trachea, nasal concha, and tonsils showed higher mean virus titers in the H1/07 and H3/68 groups than in the H1/78 and H3/08 groups. In conclusion, the above H1N1 and H3N2 strains cause severe pneumonia in ferrets by use of the modified experimental procedures and provide a good model for pneumonia caused by seasonal influenza A virus infection in humans.  相似文献   
3.
Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 104 median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0084-9) contains supplementary material, which is available to authorized users.  相似文献   
4.
Different test setups for determining perpendicular to grain embedment strength of timber have been reported in literature. In addition, different definitions of strength have been used associated with the deformation level underneath the fastener. It is shown that all reported experimental results can be related, which enables comparison on a common basis. Furthermore, several models for embedment strength perpendicular to the grain which primarily depend on timber density (specific gravity) and fastener diameter are evaluated. It is shown that the model currently prescribed by the European structural timber design code [Comité Européen de Normalisation (CEN) EN 1995-1-1: 2004: Eurocode 5—design of timber structures. Part 1.1: general rules and rules for buildings. CEN, Brussels, 2004] is unable to accurately predict the strength and an alternative is proposed. This may result in more reliable timber connections in applying the European Yield Model to determine the connection strength.  相似文献   
5.
The pathology of severe acute respiratory syndrome-coronavirus (SARS-CoV) infection in cats and ferrets is poorly described, and the distribution of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV, in the respiratory tracts of these species is unknown. We observed SARS-CoV antigen expression and lesions in the respiratory tracts of 4 cats and 4 ferrets at 4 days postinoculation and ACE2 expression in the respiratory tracts of 3 cats and 3 ferrets without infection. All infected cats and ferrets had diffuse alveolar damage associated with SARS-CoV antigen expression. A novel SARS-CoV-associated lesion was tracheo-bronchoadenitis in cats. SARS-CoV antigen expression occurred mainly in type I and II pneumocytes and serous cells of tracheo-bronchial submucosal glands of cats and in type II pneumocytes of ferrets. ACE2 expression occurred mainly in type I and II pneumocytes, tracheo-bronchial goblet cells, serous epithelial cells of tracheo-bronchial submucosal glands in cats, and type II pneumocytes and serous epithelial cells of tracheo-bronchial submucosal glands in ferrets. In conclusion, the pathology of SARS-CoV infection in cats and ferrets resembles that in humans except that syncytia and hyaline membranes were not observed. The identification of tracheo-bronchoadenitis in cats has potential implications for SARS pathogenesis and SARS-CoV excretion. Finally, these results show the importance of ACE2 expression for SARS-CoV infection in vivo: whereas ACE2 expression in type I and II pneumocytes in cats corresponded to SARS-CoV antigen expression in both cell types, expression of both ACE2 and SARS-CoV antigen in ferrets was limited mainly to type II pneumocytes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号