首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   5篇
  3篇
综合类   1篇
畜牧兽医   60篇
园艺   1篇
植物保护   2篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
In this study, the effect of ultraviolet (UV) light and dietary vitamin D on calcium metabolism in permanently indoor‐housed gentoo penguins (Pygoscelis papua ) was investigated. The study consisted of three periods, each completed with blood samples to analyse plasma concentrations of 25‐OH‐D, 1,25‐(OH)2‐D, ionized (iCa) and total calcium (tCa). During the first study period (D), animals were housed under routine conditions without UV‐light and fed a diet of different fish species, supplemented with 1,000 IU vitamin D per animal and day. The following study period (Baseline) of 28‐day duration consisted of the same diet without any vitamin D supplementation and without UV‐light. During the study period (UVB) artificial UV‐light was added for 3 weeks. The vitamin D content of fish was measured by high‐performance liquid chromatography. It varied between fish species and between facilities, ranging from no measurable content in capelin (Mallotus villosus ) to 7,340 IU vitamin D/kg original matter (OM) in herring (Clupea spp). The average dietary vitamin D content was 311 IU/kg OM at facility 1 and 6,325 IU/kg OM at facility 2, resulting in a vitamin D intake per animal and day without supplementation of 130 IU (25.5 IU/kg body weight BW) and 2,454 IU (438.2 IU/kg BW) respectively. The supplementation of vitamin D elevated significantly the plasma concentrations of 25‐OH‐D by an intraindividual difference of 15 (range ?2 to 59) nmol/L and tCa by 0.1 (0.0–0.3) mmol/L only at facility 2. The exposure to UV‐light raised the blood concentrations of tCa at facility 2 by 0.15 (0.1–0.2) mmol/L, and of iCa and tCa for females at facility 1 by 0.23 (0.13–0.41) mmol/L and 1.8 (1.1–2.5) mmol/L respectively. No significant influence of the study periods (D) and (UVB) was found for the concentrations of 1,25‐(OH)2‐D at both facilities.  相似文献   
2.
3.
The i-STAT portable clinical analyzer (PCA) was evaluated for performance in avian species. With the EG7+ cartridge, which provided results for hydrogen ion concentration, oxygen tension, carbon dioxide tension, sodium, potassium, ionized calcium, hematocrit, and various calculated parameters, analytical accuracy and precision were tested by comparing obtained values to those of established traditional blood gas and chemistry analyzers. Deming's regression and bias plots were used to compare i-STAT results with those obtained by laboratory professionals using benchtop analyzers. The reliability of the i-STAT PCA with EG7+ cartridges was good, with 0-5.7% system failures in measured values. Regression statistics were good for all blood gas analytes and acceptable for electrolytes and calculated parameters, except for potassium and base excess, for which the regression data or the discrepancy between the methods was too large. The system was reliable and easy to use and had an overall acceptable accuracy in avian species. These features, together with portability and small required blood volumes, make the i-STAT suitable for point-of-care use in critical avian patients, although single values require careful interpretation.  相似文献   
4.
Impact of dominance effects on sow longevity   总被引:1,自引:0,他引:1  
The purpose of the current study was to estimate variance components, especially dominance genetic variation, for overall leg action, length of productive life and sow stayability until third and fifth parity in the Finnish pig populations. The variance components were estimated in two purebred [Landrace (LR), n = 23 602 and Large White (LW), n =22 984] and crossbred (LR × LW, n = 17 440) data sets. Five different analyses were carried out for all the traits to compare the effect of sows’ inbreeding, common litter environment and parental dominance in the statistical model when determining the genetic correlations of the traits for the two purebred and crossbred populations. Estimated heritabilities for the traits ranged from 0.04 to 0.06. The estimates for the proportion of dominance variance of phenotypic variance (d2) varied between 0.01 and 0.17, and was highest in the crossbred dataset. The genetic correlations of the same traits in purebred and crossbred were all high (>0.75). Based on current results, the effect of dominance should be accounted for in the breeding value estimation of sow longevity, especially when data from crossbred animals are included in the analyses. Because dominance genetic variation for sow longevity exists that variation should be utilized through planned matings in producing sows for commercial production.  相似文献   
5.
This study determined the impact of porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis coinfection on the pharmacokinetic (PK) profile of ceftiofur hydrochloride in pigs after intramuscular (i.m.) injection. Eighteen clinically normal crossbred gilts were assigned by weight into a challenge group (10 pigs) and control group (eight pigs). Pigs in both groups received a single i.m. injection of ceftiofur hydrochloride (Excenel RTU Sterile Suspension; Zoetis) at a 5 mg/kg BW dose. Serial blood samples were collected to characterize the plasma concentration curve. After a 10 days drug washout period, the challenge group was inoculated with 2 mL of PRRSV isolate VR‐2385 (105.75 50% tissue culture infective doses per mL) intranasally and 8 days later inoculated S. suis. When clinical disease was evident, the second PK assessment began in both challenge and control groups. Coinfected pigs demonstrated lower values of AUC and CMAX, but higher values of Cl/F and Vz/F indicating drug kinetics were altered by infection. The data from this study have implications on ceftiofur treatment regimens in diseased pigs.  相似文献   
6.
7.
After a brief exposition of the tasks about the protection against chemical, physical, and biological environmental risks, a demonstration will be given according to deliberations of our law system about the possibilities for veterinarians to cooperate in the legislative branches. A detailed examination on former activities in the fields of pollution and the food-chain are to serve as a model for the future legislative process in Germany with the intention to strive for a harmonization of the in parts independently developed legislative branches. The external harmonization, a long-term objective, is to be found in the form of an uniform environmental law. Veterinarians take a great interest to work in advance for this uniform law in the way they bring new perspectives by cooperating in the fields of environmental hygiene and toxicology for the protection of the environmental media, of species and the food-chain. In conclusion one finds a brief documentation about the impact of the adaptation of law and the process on the EC-level.  相似文献   
8.
Three selection models were evaluated to compare selection candidate rankings based on EBV and to evaluate subsequent effects of model-derived EBV on the selection differential and expected genetic response in the population. Data were collected from carcass- and ultrasound-derived estimates of loin i.m. fat percent (IMF) in a population of Duroc swine under selection to increase IMF. The models compared were Model 1, a two-trait animal model used in the selection experiment that included ultrasound IMF from all pigs scanned and carcass IMF from pigs slaughtered to estimate breeding values for both carcass (C1) and ultrasound IMF (U1); Model 2, a single-trait animal model that included ultrasound IMF values on all pigs scanned to estimate breeding values for ultrasound IMF (U2); and Model 3, a multiple-trait animal model including carcass IMF from slaughtered pigs and the first three principal components from a total of 10 image parameters averaged across four longitudinal ultrasound images to estimate breeding values for carcass IMF (C3). Rank correlations between breeding value estimates for U1 and C1, U1 and U2, and C1 and C3 were 0.95, 0.97, and 0.92, respectively. Other rank correlations were 0.86 or less. In the selection experiment, approximately the top 10% of boars and 50% of gilts were selected. Selection differentials for pigs in Generation 3 were greatest when ranking pigs based on C1, followed by U1, U2, and C3. In addition, selection differential and estimated response were evaluated when simulating selection of the top 1, 5, and 10% of sires and 50% of dams. Results of this analysis indicated the greatest selection differential was for selection based on C1. The greatest loss in selection differential was found for selection based on C3 when selecting the top 10 and 1% of boars and 50% of gilts. The loss in estimated response when selecting varying percentages of boars and the top 50% of gilts was greatest when selection was based on C3 (16.0 to 25.8%) and least for selection based on U1 (1.3 to 10.9%). Estimated genetic change from selection based on carcass IMF was greater than selection based on ultrasound IMF. Results show that selection based on a combination of ultrasonically predicted IMF and sib carcass IMF produced the greatest selection differentials and should lead to the greatest genetic change.  相似文献   
9.
A13-day-old Arabian Thoroughbred filly weighing 40 kg (88 1b) was presented to the University of Zurich Equine Clinic with a history of depression after deworming with moxidectin at a dose of 2 mg/kg (recommended dose 0.4 mg/kg body weight)a the day before admission. The foal was found recumbent 12 hours after drug administration and was in an unconscious state 6 hours later  相似文献   
10.
Data from the National Pork Producers Council Maternal Line National Genetic Evaluation Program were used to compare longevity of sows from 6 commercial genetic lines and to estimate the phenotypic associations of sow longevity with gilt backfat thickness, ADG, age at first farrowing, litter size at first farrowing, litter weight at first farrowing, average feed intake during lactation, and average backfat loss during lactation. The lines evaluated were American Diamond Genetics, Danbred North America, Dekalb-Monsanto DK44, Dekalb-Monsanto GPK347, Newsham Hybrids, and National Swine Registry. The data set contained information from 3,251 gilts, of which 17% had censored longevity records (sows lived longer than 6 parities). The line comparison was carried out by analyzing all lines simultaneously. Because the survival distribution functions differed among genetic lines, later analyses were carried out separately for each genetic line. All analyses were based on the non-parametric proportional hazard (Cox model). Dekalb-Monsanto GPK347 sows had a lower risk of being culled than sows from the other lines. Moreover, the shape of the survival distribution function of the Delkab-Monsanto GPK347 line was different from the other 5 lines. The Dekalb-Monsanto 347 line had lower culling rates because they had lower gilt reproductive failure before the first parity than gilts from the other lines. Within line, sows with lower feed intake and greater backfat loss during lactation had a shorter productive lifetime. Thus, producers should implement management practices having positive effects on sow lactation feed intake. Additionally, the swine genetics industry is challenged to simultaneously improve efficiency of gain of their terminal market pigs and to obtain high feed intake during lactation of their maternal lines for future improvement of sow longevity. Recording sow feed intake and backfat loss during lactation in nucleus and multiplication breeding herds should be considered. Between-line differences in this study indicate that it is possible to select for sow longevity, but more research is needed to determine the most efficient selection methods to improve sow longevity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号