首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
农作物   1篇
水产渔业   1篇
畜牧兽医   5篇
  2022年   1篇
  2020年   1篇
  2012年   2篇
  2008年   1篇
  2004年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
The cloning of equids was achieved in 2003, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay was because of the limited development in the horse of more classical-assisted reproductive techniques required for successful cloning, such as oocyte maturation and in vitro embryo production. When these technologies were developed, the application of cloning also became possible and cloned horse offspring were obtained. This review summarizes the main technical procedures that are required for cloning equids and the present status of this technique. The first step is competent oocyte maturation, this is followed by oocyte enucleation and reconstruction, using either zona-enclosed or zona-free oocytes, by efficient activation to allow high cleavage rates and finally by a suitable in vitro embryo culture technique. Cloning of the first equid, a mule, was achieved using an in vivo -matured oocytes and immediate transfer of the reconstructed embryo, i.e. at the one cell stage, to the recipient oviduct. In contrast, the first horse offspring was obtained using a complete in vitro procedure from oocyte maturation to embryo culture to the blastocyst stage, followed by non-surgical transfer. Later studies on equine cloning report high efficiency relative to that for other species. Cloned equid offspring reported to date appear to be normal and those that have reached puberty have been confirmed to be fertile. In summary, horse cloning is now a reproducible technique that offers the opportunity to preserve valuable genetics and notably to generate copies of castrated champions and therefore, offspring from those champions that would be impossible to obtain otherwise.  相似文献   
3.
Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.  相似文献   
4.
5.
Many factors influence the efficiency of the in vitro embryo production technology in cattle but the most important are the physiological conditions of the donor and the culture protocols for oocyte maturation and fertilization and for embryo culture from zygote to blastocyst. Therefore, general factors such as age, body conditions and herd management play a pivotal role together with more specific factors such as reproductive soundness and ovarian cyclicity. Given that good quality and competent oocytes are available a complex series of processes, including oocyte maturation, fertilization and culture of the derived zygotes, must be completed to generate viable embryos.  相似文献   
6.
Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (Macruronus novaezelandiae, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined. Both collagens were methacrylated, to allow for UV crosslinking during extrusion 3D printing. The materials were shown to be highly cytocompatible with L929 fibroblasts. The mechanical properties of the marine-derived collagen were generally lower than those of the porcine-derived collagen; however, the Young’s modulus for both collagens was shown to be tunable over a wide range. The marine-derived collagen was seen to be a potential biomaterial in tissue engineering; however, this may be limited due to its lower thermal stability at which point it degrades to gelatin.  相似文献   
7.
Galli  C.  Duchi  R.  Crotti  G.  Turini  P.  Ponderato  N.  Colleoni  S.  Lagutina  I.  Lazzari  G. 《Veterinary research communications》2004,28(1):121-126
Many factors influence the efficiency of the in vitro embryo production technology in cattle but the most important are the physiological conditions of the donor and the culture protocols for oocyte maturation and fertilization and for embryo culture from zygote to blastocyst. Therefore, general factors such as age, body conditions and herd management play a pivotal role together with more specific factors such as reproductive soundness and ovarian cyclicity. Given that good quality and competent oocytes are available a complex series of processes, including oocyte maturation, fertilization and culture of the derived zygotes, must be completed to generate viable embryos.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号