首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   16篇
林业   10篇
农学   2篇
  13篇
综合类   54篇
水产渔业   6篇
畜牧兽医   280篇
园艺   8篇
植物保护   20篇
  2023年   2篇
  2022年   3篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   10篇
  2013年   25篇
  2012年   7篇
  2011年   5篇
  2010年   15篇
  2009年   15篇
  2008年   10篇
  2007年   11篇
  2006年   19篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   14篇
  1997年   5篇
  1996年   10篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   13篇
  1991年   16篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   3篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1980年   3篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   7篇
  1972年   2篇
  1970年   3篇
  1967年   4篇
  1942年   2篇
  1896年   2篇
排序方式: 共有393条查询结果,搜索用时 281 毫秒
1.
OBJECTIVE: To evaluate the potential of an implant of a GnRH-agonist (deslorelin) to create a progesterone free animal suitable for studying progesterone (P4) metabolism in intact cows by measuring blood P4 and faecal P4 metabolites. METHODS: Experiment 1: Eighteen non-lactating cycling Holstein-Friesian cows, 4 to 7 years old, were allocated to one of three groups to study plasma P4 concentrations preceding an intravaginal insert. These groups comprised: i) a deslorelin group (GnRH-agonist implanted); ii) a PGF group receiving two injections of prostaglandin (PGF2alpha) 12 days apart; and, iii) an ovariectomised (OVX) group. An intravaginal device (CIDR) was inserted into the vagina of each animal and left in place for 11 days. Plasma P4 concentrations were measured during the study period. Experiment 2: Twelve non-lactating cycling Holstein-Friesian cows, 4 to 7 years old, were allocated to two groups: i) a deslorelin group (GnRH-agonist implanted); and ii) an ovariectomised group. Plasma P4 and faecal P4 metabolites (20-oxo-pregnanes, 20alpha-OH and 20beta-OH) were monitored for a period of 5 weeks. RESULTS: Experiment 1: Average plasma P4 concentration did not differ between the three groups (1.28, 1.43 and 1.55 ng/mL for deslorelin, OVX and PGF cows, respectively, P = 0.8) during the period of supplementation. Experiment 2: There was no difference in plasma P4 (mean plasma P4 < 0.02 ng/mL, P = 0.9) and faecal P4 metabolites between deslorelin and OVX cows 2 weeks after the implantation (P = 0.7). CONCLUSIONS: These data showed that a GnRH-agonist (deslorelin) implant may be used as an alternative to ovariectomy to create a progesterone free animal suitable for studying the metabolism of administered P4.  相似文献   
2.
3.
4.
5.
Rotaviruses (RV) have a high prevalence in piggeries worldwide and are one of the major pathogens causing severe diarrhoea in young pigs. RV species A, B, and C have been linked to piglet diarrhoea in Australian pig herds, but their genetic diversity has not been studied in detail. Based on sequencing of the structural viral protein 7 (VP7) RVA G genotypes G3, G4 and G5, and RVC types G1, G3, G5, and G6 have been identified in Australian piggeries in previous studies. Although occurrence of RVB was reported in Australia in 1988, no further genetic analysis has been conducted. To improve health management decisions in Australian pig herds, more information on RV prevalence and genetic diversity is needed. Here, 243 enteric samples collected from 20 pig farms within Eastern Australia were analysed for the presence of RV in different age groups using a novel PCR-based multiplex assay (Pork MultiPath™ enteric panel). RVA, RVB, and RVC were detected in 10, 14, and 14 farms, respectively. Further sequencing of VP7 in selected RV-positive samples revealed G genotypes G2, G5, G9 (RVA), G6, G8, G14, G16, G20 (RVB), and G1, G3, G5, G6 (RVC) present. RVA was only detected in young (<10 weeks old) pigs whereas RVB and RVC were also detected in older animals (>11 weeks old). Interestingly, RVB and RVC G-type occurrence differed between age groups. In conclusion, this study provides new insights on the prevalence and diversity of different RV species in pig herds of Eastern Australia whilst demonstrating the ability of the Pork MultiPath™ technology to accurately differentiate between these RV species.  相似文献   
6.
Sorghum ergot produces dihydroergosine (DHES) and related alkaloids, which cause hyperthermia in cattle. Proportions of infected panicles (grain heads), leaves and stems were determined in two forage sorghum crops extensively infected 2 to 4 weeks prior to sampling and the panicles were assayed for DHES. Composite samples from each crop, plus a third grain variety crop, were coarsely chopped and half of each sealed in plastic buckets for 6 weeks to simulate ensilation. The worst-infected panicles contained up to 55 mg DHES/kg, but dilution reduced average concentrations of DHES in crops to approximately 1 mg/kg, a relatively safe level for cattle. Ensilation significantly (P = 0.043) reduced mean DHES concentrations from 0.85 to 0.46 mg/kg.  相似文献   
7.
The toxic effects of six acylurea insecticides on larvae of the tobacco hornworm were investigated at each of four environmental temperatures (20, 25, 30 and 35°C). This spans the range of temperatures which the insects can tolerate. For all the acylureas tested, mortality increased with temperature when either newly hatched or fourth-instar larvae were given insecticide in their food. Sub-lethal growth inhibition also became more pronounced at progressively higher environmental temperatures. This temperature dependence of acylurea action was not due to altered uptake of the insecticide, since there was no significant variation with temperature in the amount of [14C]flufenoxuron taken up by fifth-instar larvae when given a single meal containing labelled insecticide. Additionally, mortality of fourth-instar larvae given a single intra-haemocoelic injection of flufenoxuron was significantly greater at higher temperatures, implying that temperature affects a process that occurs after insecticide uptake. The intrinsic ability of acylureas to inhibit chitin synthesis is temperaturesensitive, since flufenoxuron inhibited the incorporation of [14C]N-acetylalucosamine into chitin by proleg epidermis in vitro significantly less well at 20°C than at the higher temperatures tested. However, there was no significant variation between the effectiveness of in-vitro chitin synthesis inhibition at 25, 30 and 35°C. These data show that the effectiveness of acylurea insecticides is subject to strong temperature effects in the range of temperatures likely to be experienced in the field.  相似文献   
8.
OBJECTIVE: To quantify stripping in traditional dipping operations and to revise dipping methods, based on prediction of stripping so that a more stable concentration of pesticide in the dipwash is achieved. DESIGN AND METHODS: Plunge and shower dips were operated sequentially according to traditional and revised dipping instructions. Dips were operated by continuous and intermittent replenishment. Samples of mixed dipwash were collected periodically and assayed for pesticide (diazinon) concentration. RESULTS: Diagrammatic representations of pesticide concentration versus number of sheep dipped indicated traditional dipping leads to wide variations in the concentration of pesticide in dipwash during dipping. Intermittent replenishment led to a 'saw-tooth' pattern in the pesticide concentration. Traditional continuous replenishment (using the starting concentration of pesticide) indicated both the rate and extent of stripping was higher in shower dipping. If sufficient sheep were dipped, equilibrium was reached between the rate of pesticide replenishment and removal. An alternative method of dip operation by continuous replenishment, using a low starting concentration of pesticide and a replenishment concentration high enough to offset the pesticide loss through stripping resulted in a more stable concentration of pesticide in the dip. CONCLUSION: Revision of dipping instructions can lead to exposure of sheep to stable concentrations of stripping pesticide during dipping.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号