首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
农作物   1篇
水产渔业   1篇
畜牧兽医   2篇
园艺   1篇
  2017年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
The essential oils of aerial parts of Achillea gypsicola Hub.-Mor., Hypericum scabrum L., Satureja hortensis L., and Origanum acutidens (Hand.-Mazz.) Letswaart were analyzed in this study by GC and GC–MS and their oils were tested for toxicity against broadbean weevil (Bruchus dentipes). A. gypsicola oil contained camphor (40.17%), 1,8-cineole (22.01%), piperitone (11.29%), borneol (9.50%) and α-terpineol (1.56%) as major components. A total of 74 components were identified by GC–MS in H. scabrum oil, including α-pinene (9.26%), terpinen-4-ol (5.12%), camphor (5.94%), δ-cadinene (4.52%), pulegone (4.45%), γ-muurolene (4.12%), pinocarvone (3.97%) and β-caryophyllene (3.42%) as predominant components. The essential oils of O. acutidens and S. hortensis were characterized by high contents of carvacrol (86.99% and 55.74%), γ-terpinene (0.71% and 20.94%), p-cymene (1.95% and 12.30%), α-terpinene (0.13% and 2.04%) and β-caryophyllene (1.30% and 1.08%). All of the essential oils were toxic to adults of B. dentipes and insect mortality increased with increasing concentration of each oil. The oils (20 μl dose) brought about 100% mortality in 36 h. Although desirable insecticidal activities against the pest were achieved with the oils from all four plant species, S. hortensis and O. acutidens oils were more effective, particularly after 6 h of treatment. The current results concluded that the essential oils, in particular O. acutidens and S. hortensis oils, may be used as potential botanical insecticides against B. dentipes.  相似文献   
2.
The chemical composition of essential oils isolated by hydrodistillation from the aerial parts of Achillea gypsicola Hub-Mor., Achillea biebersteinii Afan. and n-hexane extracts obtained from the flowers of A. gypsicola and A. biebersteinii Afan. was analyzed by GC and GC–MS. Camphor (40.17–23.56%, respectively), 1,8-cineole (22.01–38.09%, respectively), piperitone (11.29–0.37%, respectively), borneol (9.50–5.88%, respectively) and α-terpineol (1.56–5.15%, respectively) were found to be the main constituents in A. gypsicola and A. biebersteinii essential oils. Furthermore, hexane extracts of A. gypsicola and A. biebersteinii consist of mainly camphor (37.78–27.88%, respectively), 1,8-cineole (13.43–24.78%, respectively), piperitone (15.57%-tr, respectively), n-eicosane (1.61–9.68%, respectively), n-heneicosane (2.56–9.55%, respectively), n-tricosane (3.46–10.04%, respectively), linoleic acid (6.19–3.17%, respectively) and borneol (5.66–5.58%, respectively). Although the oils and extracts were characterized relatively by high content of oxygenated monoterpenes, hexane extracts of the plant samples relatively rich in n-alkanes, fatty acids and fatty acid esters as compared with the oil. The oils and hexane extracts were also tested against 12 phytopathogenic fungi and the oils found to be more toxic as compared with hexane extracts of the plant samples. A. gypsicola oil only did not inhibit the growth of Fusarium graminearum. The extracts also strongly increased the growth of Fusarium equiseti and F. graminearum. Therefore, the antifungal activity of the oils can be attributed to their relatively high content of oxygenated monoterpenes. The results of herbicidal assays of the essential oils and hexane extracts of the plant samples against five important weeds in cultivated areas, Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense L. (Scop.), Lactuca serriola L. and Rumex crispus L. showed that, in particular, the oils had inhibitory effects on the seed germination and seedling growth of A. retroflexus, C. arvense and L. serriola. The hexane extracts also showed lower herbicidal effect against the weeds in comparison to that of the oils. The findings of the present study suggest that the essential oils have a potential to be used as herbicide as well as fungicide.  相似文献   
3.
Dichelobacter nodosus, a Gram-negative strict anaerobe, is the essential causative agent of ovine footrot. Despite its worldwide presence, the disease has significant economic impact in those sheep-farming countries with a temperate climate and moderate to high rainfall, such as New Zealand (NZ) and Australia. In this study, we aimed to isolate, identify, and characterize as many D. nodosus strains as possible from NZ farms by using polymerase chain reaction (PCR)-based technology. Understanding the virulence of this bacterium and showing extensive genomic variation in the fimbrial subunit gene (fimA) in different D. nodosus strains was very important to produce serogroup specific and effective vaccine for NZ. More than 100 footrot samples were collected from four different farming regions in NZ. Thousands of primary plates were cultured anaerobically and examined with Gram-staining in order to detect single colonies of D. nodosus. Approximately 500 plates that had potential D. nodosus colonies were subcultured several times to eliminate contaminating colonies until single colonies were obtained. Variable and a part of the conserved regions of the fimbrial subunit gene (fimA) were amplified directly from bacterial DNA extracted from footrot lesions and also from cultured NZ D. nodosus isolates, using the polymerase chain reaction. Different fimA amplimers were analyzed by DNA sequencing. On the basis of DNA sequence analysis, 16 new D. nodosus isolates belonging to eight different serogroups were identified from NZ. These new D. nodosus fimA sequences from NZ were different to previously reported strains and strains used in a commercial vaccine.  相似文献   
4.
Dichelobacter nodosus is the causative agent of ovine footrot and the type-IV fimbriae on this bacterium are essential for maintaining its virulence. In this study, we reveal that these fimbriae are glycosylated. This was demonstrated in several ways: by the detection of carbohydrate on fimbrial protein using periodic acid Schiff reagent (PAS) staining of SDS-PAGE gels and by demonstrating enzymatic deglycosylation and by analysis of the amino acid sequences derived from the fimA gene, whereby the gene from isolates of D. nodosus that appeared to be glycosylated had potential glycosylation sites both inside and outside of the variable region of fimA. The results would also explain the observation that the calculated molecular weight of fimA from some D. nodosus serotypes does not correlate with the apparent size determined from electrophoretic mobility.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号