首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
农学   8篇
  22篇
综合类   1篇
农作物   4篇
水产渔业   1篇
畜牧兽医   8篇
园艺   2篇
植物保护   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有48条查询结果,搜索用时 140 毫秒
1.
An epidemiological survey for Theileria annulata infection was conducted in 12 selected villages around Ankara in Central Anatolia, Turkey, during the period April 1990 to January 1993. During the survey, 198 cattle of 30 local breeds, 84 Holstein-Friesian×local breeds and 84 Holstein-Friesian breed were examined for antibodies to T. annulata and the presence of the vector ticks. Four species of Hyalomma ticks were identified: Hyalomma anatolicum anatolicum, Hyalomma anatolicum excavtum, Hyalomma detritum and Hyalomma marginatum marginatum. Salivary gland staining indicated that infected adult ticks of all four species were present and, therefore, were implicated in the transmission of tropical theileriosis in the field. Generally, the Hyalomma infestation rate was low, with the heaviest infestations occurring on the older animals. Young adults and calves had very low infestation rates. Most ticks seen on cattle were adults, very few nymphs were found. The blood smear and serological examination of the 198 cattle conducted in March, before the start of the first disease season, showed that the prevalence of piroplasmosis was 11.1% (22 out of 198) and the seroprevalence of T. annulata was 10.6% (21 out of 198). Forty-three animals were then excluded from the study because they were seropositive and/or harboured piroplasms. Ninety-two seronegative animals showed piroplasmosis (92 out of 155) and 34 seronegative animals became seropositive for T. annulata (34 out of 155) during the three disease seasons. One animal became clinically ill with tropical theileriosis and required treatment. The incidence of cattle showing piroplasmosis and disease in the total study sample was 50.7% and 0.5% per disease season, respectively. The seroconversion rate of new infection with T. annulata in the total study was 14.3% per animal season. The number of cattle showing piroplasmosis was much greater than the number of seropositive cattle, which may indicate the presence of another species of Theileria. The two different management systems encountered in the study were considered to have influenced the tick infestation levels.  相似文献   
2.
The development, fecundity and survival ofStethorus gilvifrons Mulsant (Coleoptera: Coccinellidae) fed onTetranychus cinnabarinus Boisduval (Acari: Tetranychidae) were recorded at three constant temperatures (20, 25 and 30±1°C) and 50±10% relative humidity, under two photoperiods (16:8 L:D and 8:16 L:D) produced using artificial light (4000 lux). The development rate for the egg stage (r[Te]) increased linearly with increasing temperature (r[Te]=0.0132*T ? 0.0955; R2=0.95). The theoretical egg-development threshold was estimated to be 7.24°C; 75.75 degree-days (DD) were required for hatching. The total development time (r[Tt]) also decreased linearly with increasing temperature (r[Tt]=0.0039*T ? 0.0325; R2=0.98). The development threshold was estimated to be 8.33°C and full development from egg to adult required 256.41 DD. Higher temperatures resulted in a shorter generation time (T 0) and decreased net reproductive rate (R 0). The length of the previposition and postoviposition period, as well as longevity, decreased significantly with increasing temperature under both photoperiods. The oviposition and postoviposition periods, longevity, and total fecundity were not significantly affected by photoperiod. The values of both the intrinsic rate of increase (r m ) andR 0 were highest under the long-day photoperiod at 25°C. The mortality rate was lowest at 20°C under the short-day photoperiod. Of the conditions tested, the optimum temperature for rearingS. gilvifrons was 25°C and the optimum photoperiod was 16:8 L:D.  相似文献   
3.
Plants exposed to environmental stress factors, such as drought, chilling, high light intensity, heat, and nutrient limitations, suffer from oxidative damage catalyzed by reactive oxygen species (ROS), e.g., superoxide radical (O2equation/tex2gif-sup-1.gif), hydrogen peroxide (H2O2) and hydroxyl radical (OHequation/tex2gif-sup-4.gif). Reactive O2 species are known to be primarily responsible for impairment of cellular function and growth depression under stress conditions. In plants, ROS are predominantly produced during the photosynthetic electron transport and activation of membrane‐bound NAD(P)H oxidases. Increasing evidence suggests that improvement of potassium (K)‐nutritional status of plants can greatly lower the ROS production by reducing activity of NAD(P)H oxidases and maintaining photosynthetic electron transport. Potassium deficiency causes severe reduction in photosynthetic CO2 fixation and impairment in partitioning and utilization of photosynthates. Such disturbances result in excess of photosynthetically produced electrons and thus stimulation of ROS production by intensified transfer of electrons to O2. Recently, it was shown that there is an impressive increase in capacity of bean root cells to oxidize NADPH when exposed to K deficiency. An increase in NADPH oxidation was up to 8‐fold higher in plants with low K supply than in K‐sufficient plants. Accordingly, K deficiency also caused an increase in NADPH‐dependent O2equation/tex2gif-sup-6.gif generation in root cells. The results indicate that increases in ROS production during both photosynthetic electron transport and NADPH‐oxidizing enzyme reactions may be involved in membrane damage and chlorophyll degradation in K‐deficient plants. In good agreement with this suggestion, increases in severity of K deficiency were associated with enhanced activity of enzymes involved in detoxification of H2O2 (ascorbate peroxidase) and utilization of H2O2 in oxidative processes (guaiacol peroxidase). Moreover, K‐deficient plants are highly light‐sensitive and very rapidly become chlorotic and necrotic when exposed to high light intensity. In view of the fact that ROS production by photosynthetic electron transport and NADPH oxidases is especially high when plants are exposed to environmental stress conditions, it seems reasonable to suggest that the improvement of K‐nutritional status of plants might be of great importance for the survival of crop plants under environmental stress conditions, such as drought, chilling, and high light intensity. Several examples are presented here emphasizing the roles of K in alleviating adverse effects of different abiotic stress factors on crop production.  相似文献   
4.
5.
Genetic diversity for micronutrient efficiency among the most highly adapted and advanced hexaploid and tetraploid wheat cultivars in the world is limited compared with alien species of wheat or rye. Therefore, screening for zinc efficiency was conducted in greenhouse experiments under controlled conditions, and in field trials. Different varieties of hexaploid wheat, hexaploid oats and diploid rye, together with hexaploid and octoploid triticales, wheat-Agropyron, wheat-Aegilops and several wheat-alien chromosome addition series were studied. Considerable differences in zinc efficiency were found between wheat and its relatives. Individual chromosomes of Secale, Agropyron and Haynaldia were found to carry major genes for this character. The transfer of alien chromosome segments was effective, demonstrated using several wheat-rye translocation lines. Alien genetic information was clearly expressed in the wheat genetic background. Further experimental introgressions by chromosome manipulation and marker-aided selection may efficiently contribute to wheat improvement in marginal soils. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
Maize (Zea mays L.) is the most widely grown crop in Bosnia and Herzegovina especially in Northwest part of the country. Considering that, the maize is extremely sensitive to micronutrient deficiency the main aim of this study was to asses: (1) micronutrient availability in soil, (2) micronutrient status in silage maize; and (3) the relationship between micronutrient soil availability and maize plant concentration. Soil samples for micronutrient availability (n?=?112) were collected from 28 farms in 7 municipalities. Plant available micro- and macro- nutrients in soil were extracted using Mehlich-3, except plant available Se was extracted using 0.1M KH2PO4. Result showed that on average there was no significant difference between different soil types regarding their potential in plant available nutrients. P deficiency was present both, in soil and plants in whole region. Soil extractable P was ranging from 0.003–0.13?g?kg?1 and total plant P was ranging from 0.79–4.95?g?kg?1. Zinc deficiency was observed in two locations both in soil (0.71?mg?kg?1; 0.79?mg?kg?1) and plant (11.5?mg?kg?1; 15.8?mg?kg?1). Potential Se soil deficiency was observed on some locations, while Se plant status is not high enough to meet daily requirements of farm animals. Extractable soil nutrients could be used as relatively good predictor of potential soil and plant deficiencies, but soil nutrient interactions and climate conditions are highly effecting the plant uptake potential.  相似文献   
7.
Nineteen wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.] genotypes were evaluated for the grain concentrations of phosphorous (P), potassium (K), sulfur (S), magnesium (Mg), calcium (Ca), zinc (Zn), manganese (Mn), iron (Fe) and cooper (Cu) under five different environments in Turkey and Israel. Each mineral nutrient has been investigated for the (1) genotype by environment (G × E) interactions, (2) genotype stability, (3) correlation among minerals and (4) mineral stability. Among the macronutrients analyzed, grain concentrations of Ca (range 338–2,034 mg kg?1) and S (range 0.18–0.43%) showed the largest variation. In the case of micronutrients, the largest variation was observed in the grain Mn concentration (range 13–87 mg kg?1). Grain concentrations of Fe and Zn also showed important variation (range 27–86 and 39–115 mg kg?1, respectively). Accessions with higher nutrient concentrations (especially Zn and Fe) had also greater grain weight, suggesting that higher grain Zn and Fe concentrations are not necessarily related to small grain size or weight. Analysis of variance showed that environment was the most important source of variation for K, S, Ca, Fe, Mn and Zn, explaining between 44 and 78% of the total variation and G × E explained between 20 and 40% of the total variation in all the minerals, except for S and Zn where its effect accounted for less than 16%. Genotype was the most important source of variation for Cu (explaining 38% of the total variation). However, genotype effect was also important for Mg, Mn, Zn and S. Sulfur and Zn showed the largest heritability values (77 and 72%, respectively). Iron exhibited low heritability and high ratio value between the G × E and genotype variance components \( \left( {\sigma_{\text{GE}}^{2} /\sigma_{G}^{2} } \right) \), suggesting that specific adaptation for this mineral could be positively exploited. The wild emmer germplasm tested in the current study revealed some outstanding accessions (such as MM 5/4 and 24-39) in terms of grain Zn and Fe concentrations and environmental stability that can be used as potential donors to enhance grain micronutrient concentrations in wheats.  相似文献   
8.
About 3 billion people may suffer from micronutrient deficiency such as Ca, Fe, Mg or Zn, caused not only by a mineral deficiency in staple food but also by a high content of phytates which bind those minerals and inhibit their absorption. With the aim of evaluating the potential of new cultivars of bread‐making wheat to accumulate those minerals and low phytates, nine advanced breeding lines from an ongoing Portuguese breeding program were studied during 2 years in a field experiment. A wide genetic variability was found between the studied genotypes in all the parameters studied, especially grain yield (ranging on average between 2,027 and 3,209 kg/ha) and grain Mg and Zn concentrations (ranging on average between 1,070 and 1,336 mg/kg, and 23.4 and 30.7 mg/kg, respectively). In global terms, the cultivars with best performance, and therefore, the most potentially suitable to be used in a breeding program, were the Cultivars 3 and 4. However, such a potential varied depending on the analysed trait, and it was clearly influenced by the climatic conditions. The consumption of 100 g of Cultivar‐4 produced under the most favourable conditions might provide a 5.2% of Ca, 26.4% of Fe, 38.9% of Mg and 31.9% of Zn of the recommended daily intakes, with a very good bioavailability for Fe and Ca, but low for Mg and Zn.  相似文献   
9.
Micronutrient malnutrition affects over 2 billion people in the developing world. Iron (Fe) deficiency alone affects >47% of all preschool aged children globally, often leading to impaired physical growth, mental development, and learning capacity. Zinc (Zn) deficiency, like iron, is thought to affect billions of people, hampering growth and development, and destroying immune systems. In many micronutrient‐deficient regions, wheat is the dominant staple food making up >50% of the diet. Biofortification, or harnessing the powers of plant breeding to improve the nutritional quality of foods, is a new approach being used to improve the nutrient content of a variety of staple crops. Durum wheat in particular has been quite responsive to breeding for nutritional quality by making full use of the genetic diversity of Fe and Zn concentrations in wild and synthetic parents. Micronutrient concentration and genetic diversity has been well explored under the HarvestPlus biofortification research program, and very positive associations have been confirmed between grain concentrations of protein, Zn, and Fe. Yet some work remains to adequately explain genetic control and molecular mechanisms affecting the accumulation of Zn and Fe in grain. Further, evidence suggests that nitrogen (N) nutritional status of plants can have a positive impact on root uptake and the deposition of micronutrients in seed. Extensive research has been completed on the role of Zn fertilizers in increasing the Zn density of grain, suggesting that where fertilizers are available, making full use of Zn fertilizers can provide an immediate and effective option to increase grain Zn concentration, and productivity in particular, under soil conditions with severe Zn deficiency.  相似文献   
10.
We studied the effect of different food sources, infective juveniles of the entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora (Rhabditida: Steinernematidae, Heterorhabditidae), and tissues from the insect larva, Polyphylla fullo (Coleoptera: Scarabaeidae) or Galleria mellonella (Lepidoptera: Pyralidae), on the development, reproduction and longevity of Sancassania polyphyllae (Acari: Acaridae). We showed that the immature mite stages - protonymph and tritonymph - could develop to the next developmental stage on living or sonicated (i.e., ruptured) S. feltiae or H. bacteriophora. However, the mite larval stage could only develop to the next developmental stage on sonicated infective juveniles of the nematodes. Subsequently, we demonstrated that S. polyphyllae completed development from protonymph to adult on live S. feltiae or H. bacteriophora, whereas all immature stages of S. polyphyllae completed their development from larva to adult on insect tissues. The total developmental period of S. polyphyllae that fed on insect tissues was significantly shorter than those that fed on live infective juveniles. The pre-oviposition, oviposition, and post-oviposition periods and female longevity were not significantly different among the food sources. The total and daily fecundity of S. polyphyllae feeding on P. fullo and G. mellonella was significantly higher than those feeding on S. feltiae and H. bacteriophora, although there was no significant difference observed between P. fullo and G. mellonella or between S. feltiae and H. bacteriophora. The net reproductive rate (R0) was highest (588.3♀/♀) when S. polyphyllae fed on P. fullo. The longest mean generation time (T0) occurred on H. bacteriophora (12.6 days) and the shortest occurred on P. fullo (10.5 days). S. polyphyllae, which fed on P. fullo (rm=0.61) and G. mellonella (rm=0.55) had the highest intrinsic rate of increase (rm) compared to mites that fed on S .feltiae (rm=0.45) and H. bacteriophora (rm=0.41).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号