首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
林业   2篇
基础科学   1篇
  13篇
综合类   8篇
农作物   7篇
水产渔业   3篇
畜牧兽医   11篇
园艺   1篇
植物保护   5篇
  2022年   7篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2006年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1988年   1篇
  1973年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
Bovine isoleucyl-tRNA synthetase (IARS) disorder, a major cause of weak calf syndrome, is caused by a homozygous missense (c.235G>C) mutation in the bovine IARS gene of Japanese Black (JB) cattle, which was identified in 2013. However, the extent to which the carrier rate has changed at Kagoshima prefecture, Japan, and whether the carrier status is associated with any clinical or reproductive problems, have yet to be ascertained. In this study, using a real-time polymerase chain reaction-based genotyping assay, we determined the carrier rate in a regional JB cow population at Kagoshima prefecture. Comparative analyses were performed on the metabolic profile test (MPT) results and reproductive performance data obtained for heterozygous carrier and homozygous wild-type cows. In 2009 and 2018, DNA samples were collected from 130 and 462 clinically healthy JB cows, respectively, in Kagoshima prefecture. MPT results and reproductive performance data were evaluated for 62 cows, comprising four heterozygous carriers and 58 wild-type cows. Genotyping revealed that the carrier rate was 6.9% in 2009 and 1.5% in 2018, the difference of which was statistically significant (P<0.005). There were no statistically significant differences between the carrier and wild-type cows with respect to either MPT results or reproductive performance, indicating that the carrier cows have necessary IARS activity to maintain minimal health and reproductive potential.  相似文献   
2.
The purpose of the present study was to investigate the muscle protein expression in two pikeperches (Stizostedion lucioperca and S. volgense) through intra‐ and intermyomeric composition of white muscles. Using denaturing 10% sodium dodecylsulfate‐polyacrylamide gel electrophoresis, muscle protein expression was studied in relation to within‐ and between‐species morphological development, sex, maturity and age of pikeperches. Myosin, actin and troponin have a distinct role in the contraction and length tension of muscle fibers of these species. No obvious intramyomeric differences were found in the myosin heavy chain of both species. Myosin light chains (15–38 kDa) have different expression in different age groups. The muscle protein of the fingerling and adult S. lucioperca had high molecular weight (50 kDa) myosin in contrast to the other Percid species. The molecular weight of actins increased comparatively in low‐age‐group fish. ATP is stored in myosin and released to cause contraction when myosin comes in contact with actin of the experimental fish. Troponin regulates increasing concentration of light‐chain myosin in mature fish. Because troponin T has been implicated in the regulation of skeletal muscle kinetics, muscle contraction kinetics was predicted in different age groups. The muscle proteins of both sexes of these species have polymorphism in various age groups but have no difference in similar aged fish. No muscle protein dimorphism was found in these Percid species. The white muscle protein composition and contractile properties affect power production during fast, unsteady movement and swimming.  相似文献   
3.
Sweetpotato [Ipomoea batatas (L.) Lam. cv. Beniazuma] plug transplants produced from single node leafy cuttings under artificial light in a closed-type growth chamber were planted with roots and substrate of 11- and 15-day old (ca. two to three unfolded leaves with 0.08 m shoot length and three to four unfolded leaves with 0.11 m shoot length, respectively). The plug transplants of both the 11- and 15-day old were planted with one and three nodes depth (ca. 4 and 25 mm deep, respectively) inside the soil ridges (called one- and three-node depth, respectively, hereafter). The conventional vine cuttings (ca. 0.3 m long with seven to eight unfolded leaves) without roots were planted as Control treatment to compare the growth and yield of sweetpotato with each of the treatments of plug transplant. The main objectives of the study were to see the effects of ages of plug transplants and depths of planting for greater growth and yield of sweetpotato in the field. The yield of storage roots 115 days after planting in the field was 33 t ha−1 when using 15-day old plug transplants planted with three-node depth and was 10 t ha−1 greater than that in the Control. The mean storage root length was about 259 mm when using 11-day old plug transplants planted with three-node depth and was 33 mm greater than that in the Control. The mean diameter of storage roots was 70 mm when using 11- and 15-day old plug transplants planted with one-node depth and was 21 mm greater than that in the Control. The plug transplants planted either 11- or 15-day old showed greater overall performances than those of the conventional cuttings. The plug transplants planted with three-node depth showed greater performances than did the plug transplants planted with one-node depth.  相似文献   
4.
This research work reports new electrically conductive paper made of pineapple leaf fiber and polyaniline (PALF/PANI). The conductive paper shows remarkable preservation of mechanical properties while achieving its conductive state. Also it was found that, the amount of PANI needed to achieve the conductivity transformation is as low as 5 wt.%.  相似文献   
5.
Biosurfactants are biomolecules produced by microorganisms, low in toxicity, biodegradable, and relatively easy to synthesize using renewable waste substrates. Biosurfactants are of great importance with a wide and versatile range of applications, including the bioremediation of contaminated sites. Plants may accumulate soil potentially toxic elements(PTEs), and the accumulation efficacy may be further enhanced by the biosurfactants produced by rhizospheric microorganisms. Occasionally, the growth of bacteria slows down in adverse conditions, such as highly contaminated soils with PTEs. In this context,the plant's phytoextraction capacity could be improved by the addition of metal-tolerant bacteria that produce biosurfactants. Several sources, categories,and bioavailability of PTEs in soil are reported in this article, with the focus on the cost-effective and sustainable soil remediation technologies, where biosurfactants are used as a remediation method. How rhizobacterial biosurfactants can improve PTE recovery capabilities of plants is discussed, and the molecular mechanisms in bacterial genomes that support the production of important biosurfactants are listed. The status and cost of commercial biosurfactant production in the international market are also presented.  相似文献   
6.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon (C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitative) with respect to lability and stratification under an annual wheat-mung bean-rice cropping sequence. Composite soil samples were collected at 0-15 and 15-30 cm depths from a three-replicate split-plot experiment with tillage treatment as the main plots and crop residue levels as the sub-plots. The tillage treatments included conventional tillage (CT) and strip tillage (ST). Residue levels were high residue level (HR), 30% of the plant height, and low residue level (LR), 15%. In addition to TOC, soil samples were analyzed for particulate organic C (POC), permanganate oxidizable C (POXC), basal respiration (BR), specific maintenance respiration rate (qCO2), microbial biomass C (MBC), potentially mineralizable C (PMC), and TOC lability and management indices. The ST treatment significantly increased the TOC and labile C pools at both depths compared with the CT treatment, with the effect being more pronounced in the surface layer. The HR treatment increased TOC and labile C pools compared with the LR treatment. The ST + HR treatment showed significant increases in MBC, metabolic quotient (qR), C pool index (CPI), C lability index (CLI), and C management index (CMI), indicating improved and efficient soil biological activities in such systems compared with the CT treatment. Similarly, the stratification values, a measure of soil quality improvement, for POC and MBC were > 2, indicating improved soil quality in the ST + HR treatment compared with the CT treatment. The ST + HR treatment not only significantly increased the contents of TOC pools, but also their stocks. The CMI was correlated with qCO2, BR, and MBC, suggesting that these are sensitive indicators of early changes in TOC. The qCO2 was significantly higher in the CT + LR treatment and negatively correlated with MBC and CMI, indicating a biologically stressed soil condition in this treatment. Our findings highlight that medium-term reduced tillage with HR management has profound consequences on soil TOC quality and dynamics as mediated by alterations in labile C pools.  相似文献   
7.
Biological methane oxidation is a crucial process in the global carbon cycle that reduces methane emissions from paddy fields and natural wetlands into the atmosphere.However,soil organic carbon accumulation associated with microbial methane oxidation is poorly understood.Therefore,to investigate methane-derived carbon incorporation into soil organic matter,paddy soils originated from different parent materials(Inceptisol,Entisol,and Alfisol) were collected after rice harvesting from four major rice-producing regions in Bangladesh.Following microcosm incubation with 5%(volume/volume)13 CH4,soil13 C-atom abundances significantly increased from background level of 1.08% to 1.88%–2.78%,leading to a net methane-derived accumulation of soil organic carbon ranging from 120 to 307 mg kg-1.Approximately 23.6%–60.0% of the methane consumed was converted to soil organic carbon during microbial methane oxidation.The phylogeny of13 C-labeled pmoA(enconding the alpha subunit of the particulate methane monooxygenase) and 16 S rRNA genes further revealed that canonical α(type II) and γ(type I) Proteobacteria were active methane oxidizers.Members within the Methylobacter-and Methylosarcina-affiliated type Ia lineages dominated active methane-oxidizing communities that were responsible for the majority of methane-derived carbon accumulation in all three paddy soils,while Methylocystis-affiliated type IIa lineage was the key contributor in one paddy soil of Inceptisol origin.These results suggest that methanotroph-mediated synthesis of biomass plays an important role in soil organic matter accumulation.This study thus supports the concept that methanotrophs not only consume the greenhouse gas methane but also serve as a key biotic factor in maintaining soil fertility.  相似文献   
8.
Concentration of inositol phosphates, phospholipids, and RNA and its derivatives of ten Bangladesh soils varied between 17.5 and 150 ppm, 0.5 and 11.0 ppm, and 0.22 and 1.30 ppm respectively. Variation in inositol phosphates was related to total phosphate and organic phosphate contents. Variation in phospholipids was associated with total phosphate, organic phosphate, and organic matter contents whereas the variation in RNA and its derivatives was related to total phosphate contents of the soils. Maximum mineralization of inositol phosphates was obtained in the first 30 days either when incubated with lime or when submerged under water. A moderate rate was observed in the subsequent 30-day incubation periods. The mineralization was greater in soil which contained more organic matter and inositol phosphates. Mineralization also increased with pH. Liming enhanced mineralization as it induced conditions for the proliferation of phosphate transforming organisms.  相似文献   
9.

Background

Application of assisted reproductive technologies in buffaloes is limited to some extent by farmers’ inability to detect oestrus because of its poor expression. The present study aimed at investigating reliability of a milk progesterone enzyme-linked immunosorbent assay (ELISA) to assess the ovarian cyclicity during post partum, oestrus and post-breeding periods in water buffaloes.

Methods

Progesterone concentrations were measured by an ELISA in milk of 23 postpartum buffaloes in relation to oestrus, pregnancy, body condition score (BCS) and milk production. Two milk samples were taken at 10 days intervals, every month starting from day 30 and continued to day 150 post partum. BCS and milk production were recorded during sample collection. Milk samples from bred buffaloes were collected at Day 0 (day of breeding), Days 10–12 and Days 22–24. Defatted milk was preserved at −80°C until analysis. Pregnancy was confirmed by palpation per rectum on Days 70–90.

Results

Seventeen buffaloes had 47 ovulatory cycles, one to four in each, 13 were detected in oestrus once (28 % oestrus detection rate). Progesterone concentration ≥1 ng/ml in one of the two 10-day-interval milk samples reflected ovulation and corpus luteum formation. The intervals between calving to first luteal activity and to first detected oestrus varied from 41 to 123 days (n = 17) and 83 to 135 (n = 13) days, respectively. Eight buffaloes were bred in the course of the study and seven were found pregnant. These buffaloes had a progesterone profile of low (<1 ng/ml), high (≥ 1 ng/ml) and high (≥ 1 ng/ml) on Day 0, Days 10–12 and Days 22–24, respectively. Buffaloes cycling later in the postpartum period had fewer missed oestruses (P < 0.05). Buffaloes with a superior BCS had a shorter calving to oestrus interval and produced more milk (P < 0.05).

Conclusions

Milk progesterone ELISA is a reliable tool for monitoring ovarian cyclicity and good BCS may be an indicator of resuming cyclicity in water buffalo.  相似文献   
10.
Soil heavy metal pollution, influenced by both natural and anthropogenic factors, significantly reduces environmental quality. In this study, Cr, Ni, Cu, As, Cd, and Pb in eight different land-use soils from Patuakhali District in Bangladesh were assessed. Concentrations of Cr, Ni, Cu, As, Cd, and Pb in soils were 1-87, 5-271, 4-181, 0-80, 0.2-24.0, and 5-276 mg kg-1, respectively, measured using an inductively coupled plasma-mass spectrometer. The enrichment factor, pollution load index (PLI), and contamination factor (Cfi) of metal i were used to assess the ecological risk posed by metals in soils. The PLI ranged from 0.78 to 2.66, indicating baseline levels to progressive deterioration of soil due to metal contamination. However, Cfi of Cd ranged from 1.8 to 12.0, which showed that the studied soils were strongly impacted by Cd. Considering the severity of the potential ecological risk of a single metal, the descending order was Cd > As > Pb > Cu > Ni > Cr. Soils under all land uses showed moderate to very high potential ecological risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号