首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
林业   4篇
农学   4篇
  18篇
综合类   20篇
农作物   7篇
水产渔业   1篇
畜牧兽医   9篇
园艺   1篇
植物保护   6篇
  2023年   2篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
2.
3.
The mechanisms by which viruses modulate the immune system include changes in host genomic methylation. 5-hydroxymethylcytosine (5hmC) is the catalytic product of the Tet (Ten-11 translocation) family of enzymes and may serve as an intermediate of DNA demethylation. Recent reports suggest that 5hmC may confer consequences on cellular events including the pathogenesis of disease; in order to explore this possibility further we investigated both 5-methylcytosine (5mC) and 5hmC levels in healthy and diseased chicken bursas of Fabricius. We discovered that embryonic B-cells have high 5mC content while 5hmC decreases during bursa development. We propose that a high 5mC level protects from the mutagenic activity of the B-cell antibody diversifying enzyme activation induced deaminase (AID). In support of this view, AID mRNA increases significantly within the developing bursa from embryonic to post hatch stages while mRNAs that encode Tet family members 1 and 2 reduce over the same period. Moreover, our data revealed that infectious bursal disease virus (IBDV) disrupts this genomic methylation pattern causing a global increase in 5hmC levels in a mechanism that may involve increased Tet 1 and 2 mRNAs. To our knowledge this is the first time that a viral infection has been observed to cause global increases in genomic 5hmC within infected host tissues, underlining a mechanism that may involve the induction of B-cell genomic instability and cell death to facilitate viral egress.  相似文献   
4.
Characterization of mammalian selenoproteomes   总被引:3,自引:0,他引:3  
In the genetic code, UGA serves as a stop signal and a selenocysteine codon, but no computational methods for identifying its coding function are available. Consequently, most selenoprotein genes are misannotated. We identified selenoprotein genes in sequenced mammalian genomes by methods that rely on identification of selenocysteine insertion RNA structures, the coding potential of UGA codons, and the presence of cysteine-containing homologs. The human selenoproteome consists of 25 selenoproteins.  相似文献   
5.
The most visually spectacular events in the life of a cell occur when it divides. This is especially true in higher eukaryotes, where the size and geometry of cells allow the division process to be followed through a microscope with considerable clarity. In these organisms, the membrane surrounding the nucleus breaks down after the replicated DNA has condensed to form discrete chromosomes. Several new structures are then assembled to separate the chromosomes and partition the cytoplasm into two separate cells.  相似文献   
6.
Late blight is one of the most important potato diseases. To minimize yield losses, various protective measures are used including fungicide application. Active use of fungicides results in a contamination of the environment. Therefore, crop protection strategies optimizing the number of treatments are of great interest. Using information about late blight development in an experimental potato field recorded over 30 seasons, a simulator to forecast yield losses caused by the disease was developed based on the number of 5-d periods favorable for reinfection of plants during a vegetation season. The simulator was successfully verified using independent data on the disease development from nine unprotected potato fields in the Netherlands and Germany. The average difference between the calculated and real yield losses did not exceed 5%. Using the simulator and weather data for a period of 2007–2017, yield losses were calculated for several areas of the Bryansk, Tambov, and Orenburg Regions of Russia. The results revealed differences in disease development between these regions and may be used to develop recommendations for a frequency of fungicide applications according to the regional risk of epidemics, leading to a significant reduction in fungicide use.  相似文献   
7.
Nineteen wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.] genotypes were evaluated for the grain concentrations of phosphorous (P), potassium (K), sulfur (S), magnesium (Mg), calcium (Ca), zinc (Zn), manganese (Mn), iron (Fe) and cooper (Cu) under five different environments in Turkey and Israel. Each mineral nutrient has been investigated for the (1) genotype by environment (G × E) interactions, (2) genotype stability, (3) correlation among minerals and (4) mineral stability. Among the macronutrients analyzed, grain concentrations of Ca (range 338–2,034 mg kg?1) and S (range 0.18–0.43%) showed the largest variation. In the case of micronutrients, the largest variation was observed in the grain Mn concentration (range 13–87 mg kg?1). Grain concentrations of Fe and Zn also showed important variation (range 27–86 and 39–115 mg kg?1, respectively). Accessions with higher nutrient concentrations (especially Zn and Fe) had also greater grain weight, suggesting that higher grain Zn and Fe concentrations are not necessarily related to small grain size or weight. Analysis of variance showed that environment was the most important source of variation for K, S, Ca, Fe, Mn and Zn, explaining between 44 and 78% of the total variation and G × E explained between 20 and 40% of the total variation in all the minerals, except for S and Zn where its effect accounted for less than 16%. Genotype was the most important source of variation for Cu (explaining 38% of the total variation). However, genotype effect was also important for Mg, Mn, Zn and S. Sulfur and Zn showed the largest heritability values (77 and 72%, respectively). Iron exhibited low heritability and high ratio value between the G × E and genotype variance components \( \left( {\sigma_{\text{GE}}^{2} /\sigma_{G}^{2} } \right) \), suggesting that specific adaptation for this mineral could be positively exploited. The wild emmer germplasm tested in the current study revealed some outstanding accessions (such as MM 5/4 and 24-39) in terms of grain Zn and Fe concentrations and environmental stability that can be used as potential donors to enhance grain micronutrient concentrations in wheats.  相似文献   
8.
Levels of total mercury in yellow perch Perca flavescens from Adirondack lakes were studied in relation to characteristics of the lakes to determine why some lakes had fish with higher concentrations of mercury. Almost all mercury in fish is in the form of methylmercury, which can pose significant health hazards to humans who consume such fish. Fish mercury concentrations and water chemistry data were analyzed from eight Adirondack lakes. Four lakes (Halfmoon Lake, Sand Pond, Rock Pond, and Upper Sister Lake) had pH values of less than 5.0. Four other lakes (Lake Adirondack, Kings Flow, Harris Lake, and Lake Kushaqua) had pH values of more than 7.0. The acidic lakes also had high levels of aluminum and low acid-neutralizing capacity relative to the neutral lakes. Yellow perch (n = 100) from the acidic lakes had significantly higher levels of mercury than did those (n = 102) from the neutral lakes (P < 0.001), and the total mercury concentration increased with both length and weight of the fish. We conclude that the pH of the lake water is a major factor in determining the concentration of methylmercury in yellow perch.  相似文献   
9.
AIM: To establish a one-stage model of experimental acute necrotizing pancreatitis (ANP) in rats characterized by the simplicity of performance and a high degree of repeatability. METHODS: ANP modeling in rats was performed based on modification of the ligation model as follows: synthetic material ligature using an atraumatic needle was performed to capture pancreatic gland ducts and marginal duodenum vessels. Ligature tips were exteriorized to the abdominal wall, and the ligature was skinned over to avoid catching intestine loops. Pancreatic macroscopic appearance and histological changes were observed. Blood biochemical and hemostatic indicators were also determined. RESULTS: Laboratory analysis of rats with experimental ANP showed a pattern of disturbances similar to that observed during pancreatic necrosis in humans as soon as the first day. General blood analysis revealed enhanced leukocytosis and alterations in leukogram characteristics, indicating acute inflammation. Serum levels of amylase, aspartate aminotransferase and creatinine significantly increased (P<0.05). Hemostatic indicators showed alterations indicating formation of disseminated intravascular coagulation, and signs of endotoxicosis were observed. These typical pancreatic necrosis patterns of disturbances were validated by the results of histological investigation. CONCLUSION: Histological changes and laboratory indicators confirm the development of a suitable model of ANP.  相似文献   
10.

Purpose

Humic substances (HS) being natural polyelectrolyte macromolecules with complex and disordered molecular structures are a key component of the terrestrial ecosystem. They have remarkable influence on environmental behavior of iron, the essential nutrient for plants. They might be considered as environmental friendly iron deficiency correctors free of synthetic iron (III) chelates disadvantages. The main goal of this study was to obtain water-soluble iron-rich humic compounds (IRHCs) and to evaluate their efficiency as chlorosis correctors.

Materials and methods

A facile preparation technique of IRHCs based on low-cost and available parent material was developed. The iron-containing precursor (ferrous sulfate) was added dropwisely into alkaline potassium humate solution under vigorous stirring and pH-control. A detailed characterization both of organic and inorganic parts of the compounds was provided, the iron species identification was carried out jointly by EXAFS and Mössbauer spectroscopy. Bioassay experiments were performed using cucumber Cucumis sativus L. as target plants. Plants were grown in modified Hoagland nutrient solution, prepared on deionized water and containing iron in the form of IRHCs. Total iron content in dry plants measured by spectrophotometry after oxidative digestion and the chlorophyll a content determined after acetone extraction from fresh plant were used as parameters illustrating plants functional status under iron deficiency condition.

Results and discussion

The high solubility (up to130 g/l) and iron content (about 11 wt%) of the IRHCs obtained allow considering them to be perspective for practical applications. A set of analytical methods has shown that the main iron species in IRHCs are finely dispersed iron (III) oxide and hydroxide nanoparticles. An application of the precursor solution acidification allows to obtain compounds containing a significant part of total iron (up to 30 %) in the form of partly disordered iron (II–III) hydroxysulphate green rust GR(SO4 2?). Bioavailability of iron from IRHCs was demonstrated using bioassay in cucumber plants grown up on hydroponics under iron deficiency conditions.

Conclusions

The application of iron oxides chemistry for humic substance containing solution was proved to be an effective approach to synthesis of IRHCs. Using bioassay on cucumber plants C. sativus L. under iron deficiency conditions, the efficiency of compounds obtained as chlorosis correctors was demonstrated. Application of water-soluble IRHCs led to significant increase of chlorophyll a content (up to 415 % of the blank) and iron content in plants (up to 364 % of the blank) grown up on hydroponics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号