首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
综合类   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Despite the fact that miombo woodland soils have significant implications in global climate change processes, few studies have been done to characterize and classify the soils of the miombo woodland ecosystem of Tanzania. The current study was carried out to map and classify soils of Kitonga Forest Reserve, which is a typical miombo woodland ecosystem, in order to generate relevant information for their use and management. A representative study area of 52 km2 was selected and mapped at a scale of 1:50,000 on the basis of relief. Ten representative soil profiles were excavated and described using standard methods. Soil samples were taken from genetic soil horizons and analyzed in the laboratory for physico-chemical characteristics using standard methods. Using field and laboratory analytical data, the soils were classified according to the FAO-World Reference Base (FAO-WRB) for Soil Resources system as Cambisols, Leptosols and Fluvisols. In the USDA-NRCS Soil Taxonomy system the soils were classified as Inceptisols and Entisols. Topographical features played an important role in soil formation. The different soil types differed in physico-chemical properties, hence exhibit differences in their potentials, constraints and need specific management strategies. Texture varied from sandy to different loams; pH from 5.1 to 5.9; organic carbon from 0.9 g/kg to 20 g/kg; and CEC from 3 cmol/(+)kg to 24 cmol/(+)kg. Sustainable management of miombo woodlands ecosystem soils requires reduced deforestation and reduced land degradation.  相似文献   
2.
Soil erosion is a major threat to food security in rural areas of Africa. Field experiments were conducted from 2011 to 2014 in Majulai and Migambo villages with contrasting climatic conditions in Usambara Mountains, Tanzania. The aim was to investigate the effectiveness of mulching in reducing soil erosion and restoring soil fertility for productivity of maize (Zea mays) and beans (Phaseolus vulgaris) under miraba, a unique indigenous soil conservation measure in the area. Soil loss was significantly higher (p < 0·05) under miraba sole than under miraba with mulching, for example, 35 versus 20 and 13 versus 8 Mg ha−1 y−1 for Majulai and Migambo villages, respectively, in 2012. Soil fertility status was significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, for example, 0·35 versus 0·25% total N, 37 versus 22 mg kg−1 P and 0·6 versus 0·2 cmol(+) kg−1 K for the Majulai village; and 0·46 versus 0·38 total N, 17·2 versus 10·2 mg kg−1 P and 0·50 versus 0·2 cmol(+) kg−1 K for the Migambo village. Maize and bean yields (Mg ha−1) were significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, 2·0 versus 1·3 for maize and 0·9 versus 0·8 for beans in Majulai; and 3·8 versus 2·6 for maize and 1·0 versus 0·8 for beans in the Migambo village in 2012. This implies that Tughutu mulching is more effective in improving crop yield than Tithonia, although both could potentially protect the arable land from degradation caused by water erosion under miraba. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号