首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  4篇
综合类   4篇
农作物   3篇
畜牧兽医   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1982年   1篇
  1970年   1篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
Rice paddy soils are characterized by anoxic conditions, anaerobic carbon turnover, and significant emissions of the greenhouse gas methane. A main source for soil organic matter in paddy fields is the rice crop residue that is returned to fields if not burned. We investigated as an alternative treatment the amendment of rice paddies with rice residues that have been charred to black carbon. This treatment might avoid various negative side effects of traditional rice residue treatments. Although charred biomass is seen as almost recalcitrant, its impact on trace gas (CO2, CH4) production and emissions in paddy fields has not been studied. We quantified the degradation of black carbon produced from rice husks in four wetland soils in laboratory incubations. In two of the studied soils the addition of carbonised rice husks resulted in a transient increase in carbon mineralisation rates in comparison to control soils without organic matter addition. After almost three years, between 4.4% and 8.5% of the black carbon added was mineralised to CO2 under aerobic and anaerobic conditions, respectively. The addition of untreated rice husks resulted in a strong increase in carbon mineralisation rates and in the same time period 77%-100% of the added rice husks were mineralised aerobically and 31%-54% anaerobically. The 13C-signatures of respired CO2 gave a direct indication of black carbon mineralisation to CO2. In field trials we quantified the impact of rice husk black carbon or untreated rice husks on soil respiration and methane emissions. The application of black carbon had no significant effect on soil respiration but significantly enhanced methane emissions in the first rice crop season. The additional methane released accounted for only 0.14% of black carbon added. If the same amount of organic carbon was added as untreated rice husks, 34% of the applied carbon was released as CO2 and methane in the first season. Furthermore, the addition of fresh harvest residues to paddy fields resulted in a disproportionally high increase in methane emissions. Estimating the carbon budget of the different rice crop residue treatments indicated that charring of rice residues and adding the obtained black carbon to paddy fields instead of incorporating untreated harvest residues may reduce field methane emissions by as much as 80%. Hence, the production of black carbon from rice harvest residues could be a powerful strategy for mitigating greenhouse gas emissions from rice fields.  相似文献   
2.
Reticuloendotheliosis (RE) in captive greater prairie chickens (GPC, Tympanuchus cupido pinnatus) and Attwater's prairie chickens (APC, Tympanuchus cupido attwateri) was first reported in 1998. RE is caused by avian reticuloendotheliosis virus (REV), an oncogenic and immunosuppressive retrovirus infecting multiple species of wild and domestic birds. During August 2004 through May 2006 a captive population of prairie chickens was affected simultaneously with a neoplastic condition and also avian pox, the latter being detected in 7.4% (2 of 27) of all birds submitted for histopathology. A survey for REV was conducted in order to examine its possible role in mortality observed primarily in juvenile and adult specimens of prairie chickens. The investigative procedures included postmortem examinations, histopathology, molecular detection, and virus isolation. In total, 57 Attwater's prairie chickens and two greater prairie chickens were included in the study. REV infection was diagnosed using virus isolation or polymerase chain reaction (PCR) or both in 59.5% (28 of 47) of blood samples and/or tumors from suspect birds. Lymphosarcomas were detected in the tissues of 37% (10 of 27) of the birds submitted for histopathology. Such lymphosarcomas suggestive of RE represented the most frequent morphologic diagnosis on histopathology among 27 separate submissions of naturally dead prairie chickens. Overall, REV was detected or RE diagnosed in 34 of 59 prairie chickens (57.62%). The average death age of all birds diagnosed with lymphosarcomas on histopathology was 2.2 yr, ranging from <1 to 4 yr. Although deaths associated with neoplasia occurred in males and females in equal proportions based on submissions, overall more males were diagnosed as REV infected or RE affected (16 males vs. 7 females, and 11 birds of undetermined gender). Reticuloendotheliosis virus was confirmed as a significant cause of mortality in captive prairie chickens.  相似文献   
3.
A neonatal male sable antelope (Hippotragus niger) was found dead. A 5 by 12-cm lobulated mass was present in the oral cavity, attached to the caudal border of the soft palate; this mass contained hair, cartilage, bone, nervous tissue, muscle, and multiple gland-like structures. Histopathologic diagnosis was consistent with oropharyngeal teratoma. As a result of the lack of wear of the fetal hooves, the firm, collapsed appearance of the lungs, and the lack of other gross or histopathologic abnormalities, the oropharyngeal tumor is suspected to have caused an airway obstruction, resulting in the calf's early postnatal death. This is the first report of an oropharyngeal teratoma in the veterinary literature.  相似文献   
4.
5.
6.
Breure  T. S.  Haefele  S. M.  Hannam  J. A.  Corstanje  R.  Webster  R.  Moreno-Rojas  S.  Milne  A. E. 《Precision Agriculture》2022,23(4):1333-1353

Modern sensor technologies can provide detailed information about soil variation which allows for more precise application of fertiliser to minimise environmental harm imposed by agriculture. However, growers should lose neither income nor yield from associated uncertainties of predicted nutrient concentrations and thus one must acknowledge and account for uncertainties. A framework is presented that accounts for the uncertainty and determines the cost–benefit of data on available phosphorus (P) and potassium (K) in the soil determined from sensors. For four fields, the uncertainty associated with variation in soil P and K predicted from sensors was determined. Using published fertiliser dose–yield response curves for a horticultural crop the effect of estimation errors from sensor data on expected financial losses was quantified. The expected losses from optimal precise application were compared with the losses expected from uniform fertiliser application (equivalent to little or no knowledge on soil variation). The asymmetry of the loss function meant that underestimation of P and K generally led to greater losses than the losses from overestimation. This study shows that substantial financial gains can be obtained from sensor-based precise application of P and K fertiliser, with savings of up to £121 ha?1 for P and up to £81 ha?1 for K, with concurrent environmental benefits due to a reduction of 4–17 kg ha?1 applied P fertiliser when compared with uniform application.

  相似文献   
7.
Building up stocks of agricultural soil organic carbon (SOC) can improve soil conditions as well as contribute to climate change mitigation. As a metric, the ratio of SOC to clay offers a better predictor of soil condition than SOC alone, potentially providing a benchmark for ecosystem service payments. We determined SOC:clay ratios for 50 fields in the North Devon UNESCO World Biosphere Reserve using 30 cm soil cores (divided into 0–10 cm and 10–30 cm depth samples), with soil bulk density, soil moisture and land-use history recorded for each field. All the arable soils exceeded the minimum desirable SOC:clay ratio threshold, and the ley grassland soils generally exceeded it but were inconsistent at 10–30 cm. Land use was the primary factor driving SOC:clay ratios at 0–10 cm, with permanent pasture fields having the highest ratios followed by ley grass and then arable fields. Approximately half of the fields sampled had potential for building up SOC stock at 10–30 cm. However, at this depth, the effect of land use is significantly reduced. Within-field variability in SOC and clay was low (coefficient of variation was ~10%) at both 0–10 cm and 10–30 cm, suggesting that SOC:clay ratios precisely characterized the fields. Due to the high SOC:clay ratios found, we conclude that there is limited opportunity to market additional carbon sequestration as an asset class in the North Devon Biosphere or similar areas. Instead, preserving existing SOC stocks would be a more suitable ecosystem service payment basis.  相似文献   
8.
Breure  T. S.  Milne  A. E.  Webster  R.  Haefele  S. M.  Hannam  J. A.  Moreno-Rojas  S.  Corstanje  R. 《Precision Agriculture》2021,22(1):226-248
Precision Agriculture - How well could one predict the growth of a leafy crop from reflectance spectra from the soil and how might a grower manage the crop in the light of those predictions?...  相似文献   
9.
Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.  相似文献   
10.
Effects and fate of biochar from rice residues in rice-based systems   总被引:8,自引:0,他引:8  
Although crop residues constitute an enormous resource, actual residue management practices in rice-based systems have various negative side effects and contribute to global warming. The concept of a combined bioenergy/biochar system could tackle these problems in a new way. Rice residues would be used for energy production, thereby reducing field burning and the use of fossil fuels, and the biochar by-product could help to improve soils, avoid methane emissions, and sequester carbon in soils. To examine some of these promises, we conducted field experiments from 2005 to 2008 in three different rice production systems. Objectives were to study the effect of biochar from rice husks on soil characteristics, assess the stability of carbonized rice residues in these different systems, and evaluate the agronomic effect of biochar applications. The results showed that application of untreated and carbonized rice husks (RH and CRH) increased total organic carbon, total soil N, the C/N ratio, and available P and K. Not significant or small effects were observed for soil reaction, exchangeable Ca, Mg, Na, and the CEC. On a fertile soil, the high C/N ratio of CRH seemed to have limited N availability, thereby slightly reducing grain yields in the first three seasons after application. On a poor soil, where the crop also suffered from water stress, soil chemical and physical improvements increased yields by 16-35%. Together with a parallel study including methane and CO2 emission measurements at one site, the results strongly suggest that CRH is very stable in various rice soils and systems, possibly for thousands of years. However, the study also showed that CRH was very mobile in some soils. Especially in poor sandy soil, about half of the applied carbon seemed to have moved below 0.30 m in the soil profile within 4 years after application. We concluded that biochar from rice residues can be beneficial in rice-based systems but that actual effects on soil fertility, grain yield, and soil organic carbon will depend on site-specific conditions. Long-term studies on biochar in field trials seem essential to better understand biochar effects and to investigate its behavior in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号