首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2020年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 6 毫秒
1
1.
Three organic wastes (banana skin (BS), brewery spent grain (BSG), and spent mushroom compost (SMC)) were used for bioremediation of soil spiked with used engine oil to determine the potential of these organic wastes in enhancing biodegradation of used oil in soil. The rates of biodegradation of the oil were studied for a period of 84 days under laboratory conditions. Hydrocarbon-utilizing bacterial counts were high in all the organic waste-amended soil ranging between 10.2?×?106 and 80.5?×?106?CFU/g compared to unamended control soil throughout the 84 days of study. Oil-contaminated soil amended with BSG showed the highest reduction in total petroleum hydrocarbon with net loss of 26.76% in 84 days compared to other treatments. First-order kinetic model revealed that BSG was the best of the three organic wastes used with biodegradation rate constant of 0.3163 day?1 and half-life of 2.19 days. The results obtained demonstrated the potential of organic wastes for oil bioremediation in the order BSG?>?BS?>?SMC.  相似文献   
2.
Purpose

Heavy metals’ contamination of soil is a serious concern as far as public health and environmental protection are concerned. As a result of their persistent and toxic properties, heavy metals need to be removed from contaminated environments using an efficient technology. This study is aimed to determine the heavy metals’ (Ni, Pb, and Zn) bioremoval capacity of consortia of filamentous fungi from landfill leachate-contaminated soil.

Materials and methods

Three different groups of consortia of fungi, namely all isolated fungi, Ascomycota, and Basidiomycota, were employed for the bioremediation of the contaminated soil. A total of thirteen fungal species were used to make up the three consortia. The setup was kept for 100 days during which regular watering was carried out. Soil subsamples were collected at day 20, day 60, and 100 for monitoring of heavy metal concentration, fungal growth, and other physicochemical parameters.

Results and discussion

Highest tolerance index of 1.0 was recorded towards Ni and Zn concentrations. The maximum metal bioremoval efficiency was observed for soil bioaugmented with the all isolated fungi for Ni and Pb with the removal efficiencies as 52% and 44% respectively. However, 36% was realized as the maximum removal for Zn, and was for Ascomycota consortium-treated soil. The order for the heavy metal removal for Ni and Pb is all isolated fungi > Basidiomycota?>?Ascomycota, while for Zn is Basidiomycota?>?all isolated fungi > Ascomycota. Spectra analysis revealed the presence of peaks (1485–1445 cm?1) only in the consortia-treated soil which corresponded to the bending of the C–H bond which signifies the presence of methylene group.

Conclusions

Soil treated using bioaugmentation had the best heavy metal removal as compared to that of the control. This suggests the contribution of fungal bioaugmentation in the decontamination of heavy metal–contaminated soil.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号