首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   7篇
  7篇
综合类   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2010年   1篇
排序方式: 共有9条查询结果,搜索用时 156 毫秒
1
1.
为了预测固相反硝化反应器出水的硝酸盐浓度,优化工艺参数,以聚羟基丁酸戊酸共聚酯[Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate),PHBV]作为反应器的碳源和生物膜载体,对受硝酸盐污染的水进行生物反硝化脱氮。采用Box-Behnken试验设计,利用响应曲面法研究了反应器出水硝态氮浓度与进水硝态氮浓度、水力停留时间(hydraulic retention time,HRT)和温度之间的关系,建立了以出水硝态氮浓度为响应值的二次多项式回归模型。该数学模型可以定量描述进水硝态氮浓度、HRT和温度对出水硝态氮浓度的影响,模型预测值与试验值能吻合较好。方差分析结果表明,进水硝态氮浓度、温度和HRT及其交互作用对响应值均具有显著性影响(P<0.05)。  相似文献   
2.
为了研究盐度对污泥膨胀的影响,采用序批式生物反应器(sequencing batch reactor,SBR)处理含盐废水,考察NaCl、NA2SO4和Na3PO4盐度变化对污泥沉降性和污染物去除效果的影响。结果表明,当NaCl和NA2SO4盐度由0升高至30 g/L时,污泥容积指数(sludge volume index,SVI)由135 mL/g下降至7173 mL/g,总氮(total nitrigen,TN)去除率由80%下降到60%,胞外聚合物(extracellular polymeric substance,EPS)质量浓度由521523 mg/L升高到896917 mg/L,污泥沉降性良好;当Na3PO4盐度由0升高至8 g/L时,SVI由135 mL/g升高至198 mL/g,TN去除率由80%下降至60%,EPS质量浓度由549 mg/L升高到674 mg/L,发生污泥膨胀。随着NaCl和NA2SO4盐度的提高,污泥沉降性能提高,TN去除率下降,EPS质量浓度升高。随着Na3PO4盐度的提高,污泥沉降性能和TN去除率均下降,EPS质量浓度升高。然而,随着NaC(l300 g/L)、NA2SO4(300 g/L)和Na3PO4(80 g/L)盐度的降低,SVI值分别由71 mL/g升高至298 mL/g,73 mL/g升高至291 mL/g和198 mL/g升高至241 mL/g,TN去除率分别由62%下降至43%,65%下降至44%,70%下降至35%,EPS质量浓度分别由917 mg/L升高至1 092 mg/L,896 mg/L升高至1 078 mg/L,674 mg/L升高至759 mg/L。随着NaCl、NA2SO4和Na3PO4盐度由高降低后,污泥沉降性能和TN去除率均下降,EPS质量浓度继续升高,盐度降低后发生了污泥膨胀。  相似文献   
3.
NaCl盐度对A2/O工艺去除废水污染物和系统微生物的影响   总被引:2,自引:2,他引:0  
为了提高含盐废水的有机物去除率和脱氮效率,考察NaCl盐度对A~2/O工艺污染物去除和微生物群落的影响,采用高通量测序技术分析了厌氧区、缺氧区和好氧区的微生物群落结构,结合有机物去除和脱氮效率的变化探讨不同盐度下A~2/O工艺优势种群的演替规律,以期揭示含盐废水生物脱氮机理。结果表明:1)随着NaCl盐度的增大,A~2/O工艺污染物去除率下降,当盐度由0增大至40 g/L时,A~2/O反应器厌氧、缺氧和好氧区域COD去除率分别由52%、80%和56%下降至30%、50%和40%;厌氧区和好氧区NH4+-N去除率分别由33%和61%下降至11%和39%;缺氧区NO3--N去除率由63%下降至47%。2)与无NaCl废水相比,加入NaCl后,微生物的多样性降低;高盐度(40 g/L)与低盐度(0、10 g/L)处理的微生物群落结构差异较大;缺氧区陶氏菌属和副球菌属、好氧区梭菌属和硝化螺旋菌相对丰度的降低是导致A~2/O工艺脱氮效率下降的主要原因;厚壁菌门中的部分菌属(如Lactobacillus、Streptococcus、Tepidibacterium、Veillonella、Lachnoclostridium、Zoogloea)相对丰度增大,具有较强的耐盐性;随着盐度的增大,与脱氮相关的微生物(如变形菌门、拟杆菌门、厚壁菌门等)一直是A~2/O工艺厌氧区、缺氧区和好氧区的优势菌门,保证了不同盐度下A~2/O工艺始终具有一定的脱氮效能。  相似文献   
4.
为了提高臭氧催化氧化污水深度处理的效率,分别利用CeO_2和Al_2O_3作为活性组分和载体制备掺杂型CeO_2/Al_2O_3催化剂,通过X-射线衍射、透射电镜、N2吸附脱附曲线、X射线光电子能谱等方法对催化剂性能进行表征,考察CeO_2/Al_2O_3催化活性的变化,分析催化臭氧化去除有机物的作用机制。结果表明,制备的掺杂型CeO_2/Al_2O_3催化剂具有较大的比表面积、孔容和孔径,分别达到125 m2/g、0.242 2 cm3/g和7.777 8 nm。催化剂的活性组分主要为高度结晶化立方萤石结构的CeO_2,煅烧并未改变CeO_2的结构晶型。当进水化学需氧量(Chemical oxygen demand)为70~80 mg/L,催化剂用量为110 g/L,臭氧浓度为18 g/m3,p H值为7.8时,COD去除率最高42.8%。较高的催化效率归功于活性物质CeO_2中同时具有Ce3+和Ce4+,加速了臭氧生成更多的强氧化性?OH,催化剂的多孔结构为有机物的降解提供了充足的反应空间。催化剂使用寿命长,当催化剂重复使用5次后,COD去除率仍保持40%以上。  相似文献   
5.
以轮生冬青幼嫩茎段为外植体,通过筛选启动培养基、比较不同增殖培养基及继代次数对增殖的影响,生根诱导培养基的筛选,建立了轮生冬青的离体快速繁殖技术体系。结果表明:最适腋芽诱导培养基为B5+6-BA1.0 mg·L~(-1)+IBA0.05 mg·L~(-1);适宜增殖培养基为B5+6-BA1.5 mg·L~(-1)+IBA0.3 mg·L~(-1),第4次继代时增殖系数最大为6.3,丛生芽长势好;适宜的继代周期为35 d;最佳生根培养基为1/2B5+IBA0.2 mg·L~(-1)+NAA0.3 mg·L~(-1),生根率可达100%。移栽于V(珍珠岩)∶V(蛭石)∶V(腐殖土)=2∶1∶1的混合基质中,成活率达90%以上。  相似文献   
6.
Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响   总被引:1,自引:1,他引:0  
为了揭示多种金属离子共存的含盐废水生物处理系统污染物的去除机制和污泥特性,考察Na~+、K~+共存对A~2/O工艺污染物去除率、污泥性质和微生物群落的影响,采用高通量测序技术分析了厌氧区、缺氧区和好氧区的微生物群落结构,结合脱氮除磷效果和污泥性质的变化,探讨不同Na~+/K~+摩尔比下A~2/O工艺优势种群的演替规律,以期从微生物角度明确Na~+、K~+共存对含盐废水污染物去除率的影响。结果表明:当进水Na~+/K~+摩尔比分别为2、1和0.5时,A~2/O工艺的COD去除率分别为80%、84%和86%,TN去除率分别为73%、77%和80%,K~+浓度的提高缓解了Na~+对COD和TN去除率的抑制作用;厌氧区释磷率分别为70%、73%和74%,缺氧区吸磷率分别为53%、55%和58%,好氧区吸磷率分别为70%、72%和75%。随着进水Na~+/K~+摩尔比的降低,厌氧区、缺氧区和好氧区微生物群落的丰富度和多样性降低,微生物群落差异显著,变形菌门的相对丰度均升高约30%,拟杆菌门和绿弯菌门相对丰度逐渐降低。陶氏菌属和固氮弧菌属作为优势菌属,其相对丰度逐渐增大,有利于氮磷污染物的去除。通过增加K~+的浓度有利于提高氮、磷去除率,增强污泥的生物絮凝性和反硝化聚磷菌的活性。  相似文献   
7.
为了提高多种金属离子共存的含盐废水脱氮除磷效率和生物絮凝性,考察Fe^3+和Na^+共存对A2O工艺缺氧区污染物去除率的影响,研究缺氧区胞内聚合物(Intracellular Polymeric Substances,IPS)和胞外聚合物(Extracellular Polymeric Substances,EPS)的变化,采用气相色谱法与蒽酮比色法分析IPS中聚-β-羟丁酸(Poly-β-hydroxybutyrate,PHB)和糖原含量的变化,结合三维荧光光谱(Three-dimensional Excitation Emission Matrix Fluorescence Spectroscopy,3D-EEM)与傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)探索EPS组成结构的变化,以期揭示共存的Fe^3+和Na^+、IPS及EPS与污泥絮凝性的关系。结果表明:1)单一Fe^3+的加入有助于提高COD、TN和TP的去除率,增加碱性磷酸酶与酸性磷酸酶活性,IPS和EPS总量增多。2)在Fe^3+和Na^+共存的条件下,当Fe^3+浓度为10 mg/L、Na^+浓度为0.5 g/L时,低浓度的Na^+提高了COD、TN和TP去除率,增强了碱性磷酸酶与酸性磷酸酶活性,增加了IPS总量,但是抑制了微生物EPS的分泌,EPS总量下降;当Fe^3+为10 mg/L,Na^+浓度(>1 g/L)继续升高时,高浓度的Na^+导致COD、TN和TP去除率下降,IPS总量降低,但是促进了微生物EPS的分泌,EPS总量增加。3)由FTIR分析可知,Fe^3+和Na^+浓度的变化并未导致松散结合型胞外聚合物(Loosely Bound Extracellular Polymeric Substances,LB-EPS)和紧密结合型胞外聚合物(Tightly Bound Extracellular Polymeric Substances,TB-EPS)的官能团发生明显变化,主要成分始终为蛋白质(Protein,PN)和多糖(Polysaccharide,PS);由3D-EEM分析可知,Fe^3+的加入使三维荧光光谱中出现了可见区类色氨酸峰,Na^+的加入使色氨酸、腐殖酸类物质降解,EPS的成分改变。4)IPS和EPS之间存在竞争生长,IPS/EPS比值较高时,IPS占主导作用,污泥絮凝性能好。  相似文献   
8.
采用序批式生物反应器(SBR)处理实际生活污水,考察同步硝化反硝化(SND)过程中无碳源添加和有碳源添加氮的变化规律,采用硝化、反硝化动力学和物料平衡原理相结合的方法,导出同步硝化和反硝化两个阶段的动力学方程,建立SND的动力学模型,试验结果表明:SND动力学常数C1=7.0151,C2=0.3647,KM=0.0109.  相似文献   
9.
温度对改良A2/O工艺反硝化除磷性能的影响   总被引:2,自引:0,他引:2  
温度是影响微生物代谢活动的重要物理因素。为了提高生物同步脱氮除磷的效率,该研究采用改良A2/O反应器处理模拟城市污水,考察温度对活性污泥反硝化除磷性能和缺氧区微生物代谢动力学行为的影响,以期为反硝化除磷工艺的实际应用提供理论指导和技术支持。结果表明,当温度低于12℃时,改良系统化学需氧量(chemical oxygen demand,COD)和总氮(total nitrogen,TN)去除率明显下降,PO3-4-P去除率变化较小。通过污泥反硝化除磷性能测试发现,温度过高或过低均会导致释磷速率和吸磷速率的变化;温度对活性污泥中反硝化聚磷菌(denitrifying phosphorus accumulation organisms,DPAOs)比例影响较大,当温度为27℃时,DPAOs/PAOs达到最高值(56.16%),吸磷速率、硝酸盐还原速率以及聚-β-羟基丁酸盐(poly-β-hydroxybutyric acid,PHB)氧化速率达到最大,分别为5.15 mg/(g·h)、7.13 mg/(g·h)和0.81 mmol/(g·h)。通过拓展的阿伦尼乌斯方程对试验结果进行拟合,缺氧区动力学过程的温度系数分别为1.120~1.164和1.137~1.153,所有的缺氧化学计量学均对温度变化敏感。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号