首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  23篇
综合类   2篇
农作物   7篇
畜牧兽医   2篇
植物保护   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1990年   1篇
排序方式: 共有36条查询结果,搜索用时 500 毫秒
1.
This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize (Zea mays L.) and soil organic fertility. Chickpea (Cicer arietinum L) and wheat (Triticum aestivum L) were grown in the winters and mungbean (Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha−1 for wheat and nil or 160 kg ha−1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly (p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.  相似文献   
2.
Rhizobacteria were isolated from the rhizosphere of different Brassica species and assayed for their ability to produce auxins in vitro. The isolates varied greatly in their potential for auxin production (ranging from 0.33 to 11.40 µg ml-1). L-Tryptophan (an auxin precursor) addition to the media increased the auxin production by several fold. Based upon in vitro auxin production and growth promotion of B. juncea seedlings caused by various isolates under gnotobiotic conditions, promising isolates were selected and tested in pot trial to observe their effects on growth, yield and oil content of the same Brassica species. Results showed that seed inoculation with different isolates of rhizobacteria significantly increased plant height (up to 56.5%), stem diameter (up to 11.0%), number of branches (up to 35.7%), number of pods per plant (up to 26.7%), 1,000-grain weight (up to 33.9%), grain yield (up to 45.4%) and oil content (up to 5.6%) over the uninoculated control. Isolate S54 gave the most promising and consistent results. Highly significant correlations between L-TRP-derived auxin production by plant growth-promoting rhizobacteria (PGPR) in vitro and grain yield (r =0.77**), number of pods (r =0.78**) and number of branches per plant (r =0.77**) of B. juncea were found. It was hypothesized that these PGPR may influence the growth and yield of inoculated plants by production of auxins in the rhizosphere of inoculated plants from the L-TRP present in the root exudates, although other mechanisms of action might have also contributed.  相似文献   
3.
The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 1 1 1, 2 2 0, and 2 0 0 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC50 values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r2 values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC50 values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r2 values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.  相似文献   
4.
A field experiment was conducted to evaluate effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat under field condition. Experiment plan was comprised of twelve treatments with four replications including treatments without application of urea and biochar (control) and urea only. Biochar was applied at 1–10% of the weight of urea fertilizer applied each treatment. Results showed that application of biochar at 10% with recommended dose of urea significantly improved plant height, spike length, number of tillers, number of spikelet per spike, 1000 grain weight, grain yields, biomass yield, harvesting index, nitrogen (N) concentration and uptake in grain and straw, and agronomic efficiency of nitrogen by 6.0%, 11.1%, 32.0%, 55.3%, 5.4%, 38.0%, 19.0%, 9.0%, 19.0%, 26.0%, 65.0%, 50.0%, and 63.0%, respectively, as compared to treatment comprised of recommended rate of nitrogen without biochar.  相似文献   
5.
The use of appropriate source of phosphorus (P) fertilizer at different planting densities has considerable impact on growth, grain yield as well as profitability of maize (Zea mays L). Field experiment was conducted in order to investigate the impact of P sources [(S0 = P not applied, S1 = SSP (single super phosphate) S2 = NP (nitrophos), and S3 = DAP (diammonium phosphate)] on maize growth analysis, yield and economic returns planted at different planting densities (D1 = 40,000, D2 = 60,000, D3 = 80,000, and D4 = 100,000 plants ha?1) at the New Developmental Agricultural Research Farm of Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan, during summer 2006. This paper reports the profitability data with two objectives: 1) to compare agronomic efficiency and profitability of P-fertilizers, and 2) to know whether plant densities affect agronomic efficiency and profitability of P-fertilizers. Application of DAP and SSP resulted in higher partial factor productivity (PFP) (63.58 and 61.92 kg grains kg?1 P), agronomic efficiency (AE) (13.01 and 13.71 kg grains kg?1 P) and net returns (NR) (Rs. 16,289 and 16,204 ha?1), respectively, while NP stood at the bottom in the ranking with lower PFP (57.16 kg grains kg?1 P), AE (8.94 kg grains kg?1 P) and NR (Rs. 4,472 ha?1). Among the plant densities, D3 stood first with maximum PFP (69.60 kg grains kg?1 P), AE (18.21 kg grains kg?1 P) and NR (Rs. 21,461 ha?1) as compared to other plant densities. In conclusion, the findings suggest that growing maize at D3 applied with either SSP or DAP is more profitable in the wheat-maize cropping system in the study area.  相似文献   
6.
The effects of soil amendments [i.e., control, gypsum, farmyard manure (FYM), and gypsum?+?FYM] and seed priming (i.e., unprimed, seed soaked in water for 10?hr prior to sowing, and seed soaked in 0.4% gypsum solution for 10?hr prior to sowing) were assessed on growth and yield of wheat (Triticum aestivum L.) crop in alkali soil in northwestern Pakistan. A split plot design was used, keeping priming methods in main plots and soil amendments in sub-plots. The results showed that the effects of soil amendments and seed priming on grain yield, straw yield, harvest index and number of spikes were significant but their interactive effect was non-significant. The highest crop yields and yield index were obtained with gypsum?+?FYM amendments, and seed priming with gypsum solution. The effect on seed emergence, plant height and number of grains per spike was, however, not significant. Grain yield increased by 104% in gypsum?+?FYM treatment over control and by 16.8% with seed primed in water, followed by 8.5% with priming in gypsum solution, as compared to non-priming. The weight of 1000 grains was significantly increased by 35% in gypsum?+?FYM treatment and by 15.8% in gypsum priming. The phosphorus (P) and potassium (K) content increased with soil amendments. Soil pH and gypsum requirement reduced significantly with soil amendments. The blend of gypsum and FYM has improved the properties of salt-affected soil and enhanced fertility for optimum production of wheat in addition to the beneficial effect of seed priming in gypsum solution on crop yield. Using these amendments could be ameliorative in removing the adverse effect of the salt-affected soils, rendering the soil a good medium for plant growth.  相似文献   
7.
The objectives of the present study were to investigate phytochemical screening and to assay cytotoxicity and antibacterial activities of ethanolic extracts of leaves of two medicinal plants, Aglaonema hookerianum Schott (Family: Araceae) and Lannea grandis Engl. (Family: Anacardiaceae) available in Bangladesh. The brine shrimp lethality bioassay showed that the ethanolic extracts of Aglaonema hookerianum and Lannea grandis possessed cytotoxic activities with LC50 5.25 (microg mL(-1)) and 5.75 (microg mL(-1)) and LC90 10.47 (microg mL(-1)) and 9.55 (microg mL(-1)), respectively. Two extracts obtained from leaves were examined for their antibacterial activities against some gram positive bacteria such as Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, also gram negative strains of Pseudomonas aeruginosa, Escherichia coli, Shigella dysenteriae, Salmonella typhi, Salmonella paratyphi and Vibrio cholerae. Agar disc diffusion method was applied to observe the antibacterial efficacy of the extracts. Results indicated that both plant extracts (500 microg disc(-1)) displayed antibacterial activity against all of the tested microorganisms. These results were also compared with the zones of inhibition produced by commercially available standard antibiotic, Amoxicillin at concentration of 10 microg disc(-1). Observed antibacterial properties of the ethanolic extract of Aglaonema hookerianum Schott and Lannea grandis Engl. showed that both plants might be useful sources for the development of new potent antibacterial agents.  相似文献   
8.
Some plant-growth-promoting rhizobacteria (PGPR) promote plant growth by lowering the endogenous ethylene synthesis in the roots through their 1-aminocylopropane-1-carboxylate (ACC)-deaminase activity. However, in the vicinity of the roots may decrease the efficiency of these PGPR by stimulating ACC-oxidase activity resulting in greater ethylene production by the roots. This study was designed to assess the performance of PGPR containing ACC-deaminase for improving growth and yield of maize grown in N-amended soil. Several strains of rhizobacteria containing ACC-deaminase were screened for their growth-promoting activity in maize roots under gnotobiotic conditions. Six strains were selected and their effectiveness in soil amended with N at a concentration of 175 kg ha−1 (1050 mg pot−1) was investigated by conducting a pot trial on maize. Significant increases in plant height, root weight and total biomass were observed in response to inoculation. Based upon the results of pot trials, the three most efficient strains were selected and tested in the field for their effectiveness in the presence and absence of N fertilizer. Results of the field trial revealed that the inoculum performed relatively better in the absence of N-fertilizer application. Pseudomonas fluorescens biotype G (N3) was the most effective strain both in the presence and absence of N fertilizer. Results may imply that even in the presence of optimum levels of nitrogenous fertilizers, inoculation with rhizobacteria containing ACC-deaminase activity could be effective to improve the growth and yield of inoculated plants.  相似文献   
9.
10.
The aim of this study was to examine the effect of the nitrification inhibitor nitrapyrin on the fate and recovery of fertilizer nitrogen (N) and on N mineralization from soil organic sources. Intact soil cores were collected from a grassland field. Diammonium phosphate (DAP) and urea were applied as N sources. Cores were equilibrated at –5 kPa matric potential and incubated at 20 °C for 42 to 56 days. Changes in NH4+‐N, accumulation of NO3‐N, apparent recovery of applied N, and emission of N2O (acetylene was used to block N2O reductase) were examined during the study. A significant increase in NH4+‐N released through mineralization was recorded when nitrapyrin was added to the control soil without N fertilizer application. In the soils to which N was added either as urea or DAP, 50–90 % of the applied N disappeared from the NH4+‐N pool. Some of this N (8–16 %) accumulated as NO3‐N, while a small proportion of N (1 %) escaped as N2O. Addition of nitrapyrin resulted in a decrease and delay of NH4+‐N disappearance, accumulation of much lower soil NO3‐N contents, a substantial reduction in N2O emissions, and a 30–40 % increase in the apparent recovery of added N. The study indicates that N recovery can be increased by using the nitrification inhibitor nitrapyrin in grassland soils at moisture condition close to field capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号