首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2篇
农作物   2篇
水产渔业   1篇
畜牧兽医   14篇
  2021年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2004年   1篇
排序方式: 共有19条查询结果,搜索用时 78 毫秒
1.
Currently, antimicrobial-resistant staphylococci, particularly methicillin-resistant Staphylococcus pseudintermedius (MRSP), are frequently isolated from canine superficial pyoderma in Japan. However, little is known regarding the nasal prevalence of MRSP in pet dogs. Here, we determined the prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. Of the 125 nares and 108 affected sites of pet dogs with superficial pyoderma, 107 (13 species) and 110 (eight species) staphylococci strains, respectively, were isolated. The isolation rate of S. pseudintermedius from pyoderma sites (82/110 strains, 74.5%) was significantly higher than that from nares (57/107 strains, 53.3%) (P<0.01). Notably, the prevalence of MRSP (18/57 strains, 31.6%) in nares was equivalent to that in pyoderma sites (28/82 strains, 34.1%). Furthermore, the phenotypes and genotypes of antimicrobial resistance in MRSP strains from nares were similar to those from pyoderma sites. Our findings revealed that the prevalence of antimicrobial-resistant staphylococci in the nares of pet dogs with superficial pyoderma is the same level as that in affected sites. Therefore, considerable attention should be paid to the antimicrobial resistance of commensal staphylococci in companion animals.  相似文献   
2.
Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called “naïve-like” state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3–7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use.  相似文献   
3.
4.
5.
Mouse trophoblast stem cells (TSCs) can differentiate into trophoblast cells, which constitute the placenta. Under conventional culture conditions, in a medium supplemented with 20% fetal bovine serum (FBS), fibroblast growth factor 4 (FGF4), and heparin and in the presence of mouse embryonic fibroblast cells (MEFs) as feeder cells, TSCs maintain their undifferentiated, proliferative status. MEFs can be replaced by a 70% MEF-conditioned medium (MEF-CM) or by TGF-ß/activin A. To find out if KnockOutTM Serum Replacement (KSR) can replace FBS for TSC maintenance, we cultured mouse TSCs in KSR-based, FBS-free medium and investigated their proliferation capacity, stemness, and differentiation potential. The results indicated that fibronectin, vitronectin, or laminin coating was necessary for adhesion of TSCs under KSR-based conditions but not for their survival or proliferation. While the presence of FGF4, heparin, and activin A was not sufficient to support the proliferation of TSCs, the addition of a pan-retinoic acid receptor inverse agonist and a ROCK-inhibitor yielded a proliferation rate comparable to that obtained under the conventional FBS-based conditions. TSCs cultured under the KSR-based conditions had a gene expression and DNA methylation profile characteristic of TSCs and exhibited a differentiation potential. Moreover, under KSR-based conditions, we could obtain a suspension culture of TSCs using extracellular matrix (ECM) coating-free dishes. Thus, we have established here, KSR-based culture conditions for the maintenance of TSCs, which should be useful for future studies.  相似文献   
6.
7.
Choroid plexus tumor (CPT) is a primary intracranial neoplasm of the choroid plexus epithelium in the central nervous system. In the current World Health Organization classification, CPT is classified into two categories; choroid plexus papilloma (CPP) and carcinoma (CPC). In the present study, we investigated immunohistochemical expressions of N-cadherin, E-cadherin and β-catenin in 5 canine CPT cases (1 disseminated CPC, 2 CPCs and 2 CPPs). One CPP case was positive for N-cadherin and β-catenin, but negative for E-cadherin. The disseminated CPC case was positive for E-cadherin and β-catenin, but negative for N-cadherin. The other cases were positive for the three molecules examined. These results suggest that loss of the N-cadherin expression might associate with the spreading of CPC cells.  相似文献   
8.
Diploid germ cells are thought to have pluripotency potential. We recently described a method to derive pluripotent stem cells (PSCs) from cultured spermatogonial stem cells (SSCs) by depleting Trp53 and Dmrt1, both of which are known suppressors of teratomas. In this study, we used this technique to analyze the effect of this protocol in deriving PSCs from the male germline at different developmental stages. We collected primordial germ cells (PGCs), gonocytes and spermatogonia, and the cells were transduced with lentiviruses expressing short hairpin RNA against Dmrt1 and/or Trp53. We found that PGCs are highly susceptible to reprogramming induction and that only Trp53 depletion was sufficient to induce pluripotency. In contrast, gonocytes and spermatogonia were resistant to reprogramming by double knockdown of Dmrt1 and Trp53. PSCs derived from PGCs contributed to chimeras produced by blastocyst injection, but some of the embryos showed placenta-only phenotypes suggestive of epigenetic abnormalities of PGC-derived PSCs. These results show that PGCs and gonocytes/spermatogonia have distinct reprogramming potential and also suggest that fresh and cultured SSCs do not necessarily have the same properties.  相似文献   
9.
Ehlers-Danlos syndrome (EDS) is a group of disorders caused by abnormalities that are identified in the extracellular matrix. Transforming growth factor-β1 (TGF-β1) plays a crucial role in formation of the extracellular matrix. It has been reported that the loss of function of zinc transporter ZRT/IRT-like protein 13 (ZIP13) causes the spondylocheiro dysplastic form of EDS (SCD-EDS: OMIM 612350), in which dysregulation of the TGF-β1 signaling pathway is observed, although the relationship between the dermis abnormalities and peripheral TGF-β1 level has been unclear. We investigated the characteristics of the dermis of the Zip13-knockout (KO) mouse, an animal model for SCD-EDS. Both the ratio of dermatan sulfate (DS) in glycosaminoglycan (GAG) components and the amount of collagen were decreased, and there were very few collagen fibrils with diameters of more than 150 nm in Zip13-KO mice dermis. We also found that the TGF-β1 level was significantly higher in Zip13-KO mice serum. These results suggest that collagen synthesis and collagen fibril fusion might be impaired in Zip13-KO mice and that the possible decrease of decorin level by reduction of the DS ratio probably caused an increase of free TGF-β1 in Zip13-KO mice. In conclusion, skin fragility due to defective ZIP13 protein may be attributable to impaired extracellular matrix synthesis accompanied by abnormal peripheral TGF-β homeostasis.  相似文献   
10.
In mice, one of the major epigenetic errors associated with somatic cell nuclear transfer (SCNT) is ectopic expression of Xist during the preimplantation period in both sexes. We found that this aberrant Xist expression could be impeded by deletion of Xist from the putative active X chromosome in donor cells. In male clones, it was also found that prior injection of Xist-specific siRNA could significantly improve the postimplantation development of cloned embryos as a result of a significant repression of Xist at the morula stage. In this study, we examined whether the same knockdown strategy could work as well in female SCNT-derived embryos. Embryos were reconstructed with cumulus cell nuclei and injected with Xist-specific siRNA at 6–7 h after oocyte activation. RNA FISH analysis revealed that siRNA treatment successfully repressed Xist RNA at the morula stage, as shown by the significant decrease in the number of cloud-type Xist signals in the blastomere nuclei. However, blastomeres with different sizes (from “pinpoint” to “cloud”) and numbers of Xist RNA signals remained within single embryos. After implantation, the dysregulated Xist expression was normalized autonomously, as in male clones, to a state of monoallelic expression in both embryonic and extraembryonic tissues. However, at term there was no significant improvement in the survival of the siRNA-injected cloned embryos. Thus, siRNA injection was largely effective in repressing the Xist overexpression in female cloned embryos but failed to rescue them, probably because of an inability to mimic consistent monoallelic Xist expression in these embryos. This could only be achieved in female embryos by applying a gene knockout strategy rather than an siRNA approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号