首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  4篇
植物保护   2篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT Phaeocryptopus gaeumannii is a widespread foliar parasite of Douglas-fir. Although normally innocuous, the fungus also causes the defoliating disease Swiss needle cast in heavily infected needles. The extent of P. gaeumannii colonization in Douglas-fir foliage was estimated with real-time quantitative polymerase chain reaction (PCR) using TaqMan chemistry. In order to derive a normalized expression of colonization, both pathogen and host DNA were simultaneously amplified but individually detected by species-specific primers and TaqMan probes labeled with different fluorescent dyes. Detection of host DNA additionally provided an endogenous reference that served as both an internal positive control and adjusted for variation introduced by sample-to-sample differences in DNA extraction and PCR efficiencies. The genes employed for designing the TaqMan probes and primers were beta-tubulin for the pathogen and a LEAFY/FLORICAULA-like gene involved in floral development for the tree host. Both probe/primer sets exhibited high precision and reproducibility over a linear range of 4 orders of magnitude. This eliminated the need to analyze samples in multiple dilutions when comparing lightly with heavily infected needles. Quantification of the fungus within needles was successful as early as 1 month after initial infection. Real-time PCR is the only method currently available to quantify P. gaeumannii colonization early in the first year of the colonization process.  相似文献   
2.
Bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass (Panicum virginatum) werecompared for their ability to accumulate 137Csand 90Sr from three different contaminated soilsin the presence and absence of either sphagnum peator poultry litter amendments. Above-ground plantbiomass did not differ between plants that were notexposed to these radionuclides and those that wereexposed to soil containing 137Cs or 90Sr.After three harvests, bahia, johnson and switchgrassplants accumulated from 17.2 to 67.3% of the137Cs and from 25.1 to 61.7% of the 90Sradded to the soil. Poultry litter and peat mossamendments increased aboveground plant biomass,activity of 137Cs or 90Sr in plant tissue, %accumulation of 137Cs or 90Sr from soil andthe plant bioconcentration ratio at each harvestcompared to the control (no amendment) treatment. Thegreatest increases in plant biomass, and radionuclideaccumulation were observed with poultry litter foreach of the three grass species. Johnson grass hadgreater aboveground plant biomass, activity of137Cs and 90Sr in plant tissue, %accumulation of 137Cs or 90Sr from soil andbioconcentration ratio in each soil amendment, at eachharvest compared to bahia and switchgrass. Thegreatest accumulation of 137Cs and 90Sr wasmeasured in johnson grass grown in soil that wasamended with poultry litter. These results suggestthat plant species selection and agronomic practicesmay need to be considered to maximize phytoremediationof radionuclide contaminated soils.  相似文献   
3.
Cesium-137 (137Cs) and Strontium-90 (90Sr) are radionuclides characteristic of nuclear fallout from nuclear weapons testing and nuclear reactor accidents. Alamo switchgrass (Panicum virginatum L.) is a perennial C4 species native to central North America that produces exceptionally high biomass yields in short periods of time. In three separate experiments, Alamo switchgrass plants were tested for their ability to accumulate 137 Cs and90 Sr from a contaminated growth medium. Plants in experiment 1 were grown in 33 × 20 × 7 cm plastic pans containing 2.5 kg sand. Plants in experiments 2 and 3 were grown in 30 × 3 cm diameter test tubes containing 0.3 kg growth medium. After 3 months of plant growth, either 102 Bq 137Cs or 73 Bq90 Sr g?1 soil were added to the growth medium. Plants in all three experiments were grown within a greenhouse that was maintained at 22 ± 2 °C with a photosynthetic active radiation of 400–700 µmol m?2 s?1 and a 14–16 h photoperiod. Above-ground plant biomass did not differ between plants that were not exposed to these radionuclides (controls) and those that were exposed to growth medium containing 137Cs or90 Sr over the course of the experiment. Plants accumulated 44 and 36% of the total amount of 90Sr and137 Cs added to growth medium after the first 5 harvests. After the first two harvests, the concentration of 137Cs and90 Sr in plant tissue and the amount of 137Cs or90 Sr removed from growth medium declined with each successive harvest. Duration of exposure correlated curvilinearly with accumulation of both 90Sr and 137Cs by plants (r2 = 0.95 and 0.78, respectively). As concentration of both 137Cs and 90Sr in growth medium increased, plant accumulation of both radionuclides increased and correlated curvilinearly in seedlings (r2 = 0.83 and 0.89 respectively).  相似文献   
4.
Primary sludge, secondary sludge, and wood ash from a pulp and paper mill were combined with sand to create a synthetic topsoil (C:N ratio of 18:1) to restore an abandoned gravel pit. Synthetic topsoil was applied to field microcosms at rates equivalent to 0, 2170, 4341, or 6511 kg N/ha; each was seeded with grass. Fifteen chemical constituents in leachate were measured during two field seasons. Cadmium, Ni and Zn were mobilized rapidly by soil disturbance. Chloride and SO4-S eluted rapidly from the sludge along with Na. Nitrate leached with Ca late in each field season when sludge N-mineralization and nitrification exceeded plant uptake and microbial immobilization. Ammonium elution was negligible. Dissolved organic carbon (DOC) was mobilized by decomposition of organic matter in the sludge, as were Mg and K. Copper eluted with DOC, probably as an organic ligand. Lead and ortho-P were below our detection limits. We concluded that a synthetic topsoil with a 30:1 C:N ratio applied at a rate of 2100-4300 kg N/ha should provide adequate plant nutrition while minimizing water quality hazards.  相似文献   
5.
The objectives of these studies were two-fold: (1) to determine efficacy of low and high expression hMT gene constructs by assessing accumulation of Cu in shoots of parental and transgenic plants of alfalfa (Medicago varia L.) exposed to different concentrations of CuSO4 by addition of CuSO4 solutions to soil and (2) to identify potential unintended effects of the genetic engineering on root and shoot biomass, shoot nutrient content, arbuscular mycorrhizal infection and on the metabolic functions of microbial communities in the rhizosphere. In the absence of exogenous CuSO4 additions to soil shoot biomass and the macronutrient (C, P, K, Ca, Mg and N) content of plants expressing hMT were not significantly different from the parental control. In the 0.5 mM and 1.0 mM CuSO4 treatments transgenic plants expressing the commonly used transgenic β-glucuronidase (GUS) marker had significantly higher Fe content than the parental genotype. Significant differences were observed in the carbon substrate utilization patterns of rhizosphere microbial communities among the transgenic plants; no significant differences were observed in the percent mycorrhizal infection of parental and transgenic plants. Shoot biomass increased significantly in all genotypes treated with 0.5 mM CuSO4 and decreased in all genotypes at CuSO4 concentrations of 1.5 mM and 2.0 mM. Root dry weights decreased significantly in all genotypes at concentrations of 1.0 mM, 1.5 mM and 2.0 mM CuSO4. The largest decreases in root dry weight were observed in hMT genotypes grown in soil treated with 1.5 and 2.0 mM CuSO4. In plants treated with 1.5 mM CuSO4, shoots of transgenic plants expressing the hMT gene accumulated nominally, but not statistically significantly higher levels of Cu in shoot tissue. Our results were surprising with regard to lack of sufficient efficacy of the current hMT constructs for significant accumulation of Cu from soil treated with CuSO4. However, our results suggest the utility of applying adverse levels of CuSO4 or other environmental stressors to identify potential unintended effects of genetic engineering that may not be apparent under typically more optimal plant growth test conditions.  相似文献   
6.
ABSTRACT Six potato cultivars were grown with or without the addition of Verticillium dahliae inoculum and were watered at 50, 75, or 100% estimated consumptive use. The applied water x cultivar interaction was significant (P = 0.009 and P = 0.001 for 1996 and 1997, respectively) for the relative area under the senescence progress curve (RAUSPC). With a decrease in water, there was an increase in RAUSPC. A significant interaction of inoculum density x cultivar also was found, based on RAUSPC (P = 0.0194 and P = 0.0033 for 1996 and 1997, respectively). In V. dahliae-infested plots, 'Katahdin' and 'Ranger Russet' were resistant to Verticillium wilt. Population size of V. dahliae in stem apices was significantly lower in 'Katahdin' in both 1996 and 1997 (P = 0.0001) and in 'Ranger Russet' in 1997 (P = 0.0001) than in the other cultivars. 'Russet Burbank' and 'Shepody' had large apical stem populations of V. dahliae and higher RAUSPC values associated with both V. dahliae inoculum and decreased amount of applied water. Marketable tuber yield was unaffected by V. dahliae in both years. Cultivar resistance to Verticillium wilt was related to cultivar tolerance to moisture deficit stress. Results suggest that moisture deficit stress response has the potential to be a useful tool in protocols for screening potato for Verticillium resistance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号